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Abstract. Recommitments are essential for limited partner investors to
maintain a target exposure to private equity. However, recommitting to
new funds is irrevocable and expose investors to cashflow uncertainty
and illiquidity. Maintaining a specific target allocation is therefore a te-
dious and critical task. Unfortunately, recommitment strategies are still
manually designed and few works in the literature have endeavored to
develop a recommitment system balancing opportunity cost and risk of
default. Due to its strong similarities to a control system, we propose to
“learn how to recommit” with Reinforcement Learning (RL) and, more
specifically, using Proximal Policy Optimisation (PPO). To the best of
our knowledge, this is the first attempt a RL algorithm is applied to pri-
vate equity with the aim to solve the recommitment problematic. After
training the RL model on simulated portfolios, the resulting recommit-
ment policy is compared to state-of-the-art strategies. Numerical results
suggest that the trained policy can achieve high target allocation while
bounding the risk of being overinvested.

Keywords: Reinforcement learning · Private Equity · Control system.

1 Introduction

Private equity is an alternative asset class which refers to direct investments
in non-listed companies made at different stages of their development to create
added value. These companies are then sold few years later with the expecta-
tion to obtain a significant capital gain. Early investments in strong performing
companies help them to develop their business and make them more profitable.
Contrary to the public equity market, private equity investments are not eas-
ily accessed as stocks and bonds. Recently, private equity has been included in
the portfolios of institutional investors such as pension funds, sovereign wealth
funds, etc. These institutional investors have been building sizable allocation by
investing “indirectly” to private companies through private equity funds. Indeed,
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managing such a less traditional asset class requires a high level of expertise to
properly enter and exit direct investments. This explains their preferred modus
operandi to invest indirectly as so-called limited partners (LP) through limited
partnership funds in which they commit a certain amount of capital for a given
period of time. Commitments are irrevocable and called at the discretion of the
fund’s management, i.e., the general partner (GP), to decide how investments
should be realised. The committed capital is gradually draw down during the so-
called investment period which last several years. To complicate matters, stakes
in these funds are illiquid [7] which enforce LP investors to be extremely cautious
when it comes to recommit into new funds to limit the risk of default. Generally,
the committed capital is an upper-bound of the total capital finally called by a
fund. A significant part (≈ 10%) of the initial capital is generally never invested
as described in [18]. Furthermore, committed capital waiting to be called is gen-
erally pictured as dry powder. Prequin 4 reported in November 2020 that North
American private equity firms are sitting on almost $980bn in reserves. This
uncalled capital dramatically impacts investors’ exposure (see [12]). In practice,
LP investors therefore run so-called overcommitment strategies, i.e., committing
more capital in aggregate than actually available as dedicated resources, with
the gap expected to be filled by future distributions from investments made in
other existing funds. These strategies thus increase the liquidity risk when the
fund is only few years old when the likelihood to be called is the highest. LP
investors need to setup a commitment-pacing strategy, i.e., on how to size and
time their commitments, in order to achieve and maintain a target allocation
while complying with the liquidity constraints imposed by the uncalled capital.
As reported in [3] and [9], few investigations have been engaged to evaluate the
cost of maintaining uncalled capital. This is the reason why the current existing
models still remain rudimentary and depend on spreadsheet-based and “trial-
and-error” approaches. These manually-designed strategies are often error-prone
and naive although the opportunity cost, i.e., the cost of being underinvested,
and the risk of default in case of overinvestment can be very damaging for LP
investors.

In this work, we propose to investigate an approach relying on Reinforcement
Learning to learn how to size and time dynamic recommitments. The latter can
be formulated as a RL problem to discover reliable recommitment policies using
a Proximal Policy Optimisation algorithm. Recommitment policies can be assim-
ilated as control policies which should maintain a target allocation minimizing
the opportunity cost while preserving investors from the risk of default.

The remainder of this paper is organized as follows. The next section provides
a state of the art on existing recommitment strategies. Section 3 introduces for-
mally the Private Equity Recommitment Problem (PERP). Section 4 described
the Proximal Policy Optimisation algorithm applied on the RL version of the
PERP introduced in Section 5. Experiment setups and results are discussed in

4 https://www.preqin.com/insights/research/blogs/what-private-equitys-record-dry-
powder-haul-means-for-the-industry
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Section 6 and 7. Finally, the last section provides our conclusions and proposes
some possible perspectives.

2 Related works

Recommitment strategies are essential to keep investors constantly invested at
some target allocation. To the best of our knowledge, few studies have tried
to model this as an optimisation problem. They generally rely on some rules
of thumb lacking robustness and flexibility. In [4], authors considered that the
entire private equity allocation should be recommitted to new funds every year
without taking into account past portfolios evolution. Nevin et al. in [11] based
their recommitment strategy on average rates of distributions and commitments.
New commitments should be made if the committed capital does not reach a
target threshold to compensate the difference. This strategy assumes constants
rates which seems very illusory over time. In [18], de Zwart et al. proposed
recommitment strategies for funds aiming to maintain stable the exposure to
PE. The strategy’s key feature is the level of new commitments in a given pe-
riod which depends on the current portfolio’s characteristics. Importantly, de
Zwart’s strategies does not require to forecast funds’cashflows. Although they
consider 100% PE portfolios, their last suggested strategy is a first attempt
to design dynamic recommitment strategies relying on past portfolio develop-
ment. Finally, Oberli et al. in [12] extended de Zwart’s work to multi-asset class
portfolios including stocks and bonds. These two last contributions solely rely
on handcrafted recommitment strategies to control the investment degree (ID),
i.e., PE exposure. While they are innovative and improving attempts without
the need to forecast future cashflows, they have been built on specific and lim-
ited datasets with given market conditions. Building recommitment strategies
in various market conditions is a challenging task. In this work, we investigate
Reinforcement Learning to discover promising recommitment policies using the
policy-based PPO algorithm. Policy-based algorithms [13, 15] have been moti-
vated by the fact that solving a RL problem is all about finding a sequences of
actions even for value-based algorithms [10, 6]. Discovering and predicting the
best actions avoid the computational burden to compute all state values. Besides,
when the action space is continuous or very large, policy-based approaches are
more attractive than values as we do not need to solve an optimisation problem
to select the best action.

3 Problem description

This section describes the Private Equity Recommitment (PERP) by considering
a single LP investor owning a 100% private equity portfolio. To minimize the
opportunity cost, the investor’s primary target is to remain fully invested while
avoiding cash shortage. Let us define P(t) = {f}Mi=1 the set of active funds in
the portfolio at time t. In order to measure its degree of investment, the fraction
of total allocated capital that is actually invested can be computed as follows:



4 E. Kieffer et al.

ID(P, t) =

∑
f∈P(t)

NAV (f, t)∑
f∈P(t)

NAV (f, t) + Cash(P, t)
(1)

where
∑

f∈P(t)
NAV (f, t) represents the sum of all Net Asset Value (NAV ) for the

underlying funds in the portfolio at period t. Cash(P, t) accounts for the global
uninvested cash in the portfolio, i.e., uncalled capital and possible distributions.
Ideally, the investment degree ID should be as close as possible to 1. A trivial
but not viable solution would be to bring Cash(P, t) to 0 but this is without
counting on future and inopportune capital calls exceeding the investor resources
capacities. Becoming a defaulting investor once capital has been committed is
subject to strong financial and reputational penalties. The PERP is therefore a
challenging problematic for LP investors as they constantly need to stay close to
the boundary without over-crossing it. In [18], authors modelled the problem as a
sequence of single-period portfolio optimisation problems maximizing subsequent
investment degrees using the following formulation:

min
C(P,t)

Et
[
(1− ID(P, t+ 1))2

]
(2)

where the C(P, t) represents the optimal amount of capital to be recommitted
at t. Note that this model only determines the optimal recommitment level with
regards to the next period. This is debatable as the committed capital is called
progressively over the investment period, i.e., roughly during the first 6 years.
With respect to formulation (2), the optimal level of commitment at period t is
therefore:

C(P, t) = Et

(
Cash(P, t) +D(P, t+ 1)−

∑τ
i=1 γt+1,i+1C(P, t− i)

γt+1,1

)
(3)

with Et the conditional expectation, Cash(P, t) the uninvested cash in the port-
folio,D(P, t) representing distributions for the next period, C(P, t−i) the capital
committed i period ago and γt+1,i+1 is the fraction of the capital committed i
periods ago. γt+1,i+1 enables to compute the total capital called at the end of
quarter t+ 1, i.e.,

CC(P, t − i) =
τ∑
i=0

γt+1,i+1C(P, t − i) with τ representing the maximum fund

age at which capital can still be called. Interested readers can refer to [18] for
more details about the proof.

One can observe that the analytical solution requires to forecast distributions
(see [16, 8]) at t+1 and the fraction of the capital committed in the past that will
be called. Although prediction models can be developed to approximate future
distributions, it is very unlikely to guess future capital calls as direct investments
in private companies are made at the discretion of the fund’s management.
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Some works [18, 12] in the literature have tried to cope with this issue by en-
gineering strategies using only available and past quantities. These strategies can
be likened “heuristics” to approximate the optimal amount to be recommitted
at each period and are defined as follows:

– DZ1(P, t) = D(P, t);
– DZ2(P, t) = D(P, t) + UC(P, t− 24);
– DZ3(P, t) = 1

ID(P,t) × (D(P, t) + UC(P, t− 24))

Strategy DZ1(P, t) recommits only current distributions at t while the strat-
egy DZ2(P, t) incorporates the uncalled capital made 24 quarters ago, i.e.,
UC(P, t − 24). The inclusion of this quantity is based on the observation that
unallocated but committed capital for older funds that already passed their
maximal NAV’s peak is unlikely to be called. These funds are typically in the
divestment period. The last strategy DZ3(P, t) scales recommitments obtained
from DZ2(P, t) with the inverse of the current investment degree. If the invest-
ment degree is high, the recommitted capital will be decreased. Conversely, a low
investment degree will amplify the recommitted capital. This allows to perform
some kind of active control to adjust the level of recommitment to reach and
remain stable at a target allocation .

In this paper, we propose to learn an active control system to recommit at
each period. Instead of relying on cashflow predictions and strategies’ engineering
which require strong expert knowledge, we posit that recommitment policies
could be learnt using a policy-based algorithm introduced in the next section.

4 Proximal Policy Optimisation

As aforementioned in section 2, the number of approaches relying on policy
learning has flourished since recent years. They all try to find a trade-off be-
tween fast training and stability. Making large steps in the policy update can be
disastrous, especially for on-policy algorithms which could never recover from
subsequent updates. Among all existing alternatives in the literature, we consid-
ered the Proximal Policy Optimisation (PPO) algorithm [15] due to its simplicity.
Although the PPO algorithm was released long after the Trust Region Policy
Optimisation (TRPO) [13] which was the first of its kind, the PPO policy update
is simpler but empirically seems to perform at least as well as TRPO relying on
a second-order approach. But before diving into the stability improvement pro-
posed in the PPO algorithm, let us recall the foundations, i.e., the vanilla policy
gradient. Let πθ represents a policy as a function of the parameter θ, the current
state st, the taken action at and the received reward rt at time t. A trajectory τ
is a sequence of states and actions representing the path taken by an agent. In
Reinforcement Learning, the goal is to discover the trajectory maximizing the
expected return J(θ) = Eπθ [R(τ)] by updating sequentially the weights θ as
follows: θk+1 = θk + α ∗ ∇θJ(θk) where ∇θJ(θk) represents the policy gradient
and is expressed as ∇θJ(θ) = E [R(τ)∇θ log πθ(at|st)]. R(τ) can take different
forms as suggested in [14]:
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– the total reward trajectory:
∑
t=0

rt

– the future reward from action at or rewards-to-go:
∑
t=t′

r′t

– Future reward with baseline:
∑
t=t′

r′t − b(st)

– State-action value function: Qπθ (st, at)
– Advantage function: Aπθ (st, at) = Qπθ (st, at)− V π(st)

All the previous choices lead to the same expected value but have different
variance. The formulation using the advantage function is extremely common as
it uses the state-action value function and the estimation value of the state as
baseline to reduce the variance of the gradient. The PPO algorithm relies on an
estimation of the advantage function and try to avoid parameter updates that
change the policy too much at one step. In the same way as TRPO, the loss
function is built to measure of how policy πθ performs relatively to an old policy
πθold :

L(θ, θold) = E

[
Aπθ (st, at)

πθ(at|st)
πθold(at|st)

]
(4)

While the TRPO algorithm uses the hard constraint DKL(θ||θold) < λ to
limit the KL-divergence between both policies, the PPO algorithm relaxes the
hard constraints and:

– either penalizes the KL-divergence directly in the loss function. This is the
PPO-penalty version which we did not consider in this work.

– or clips the ratio πθ(at|st)
πθold (at|st)

in the loss function to remove incentives for the

new policy to get far from the old policy. Note that the KL-divergence is not
used anymore as constraints nor as a penalty.

The PPO-clip algorithm considered in this work is depicted in Algorithm
1. Contrary to the penalty version in which penalty coefficients are adjusted
automatically during training, PPO-clip requires a static hyper-parameter ε use
to clip the ratio between the policies. Due to space restriction, we will not go
further into details but more explanations can be obtained from the original
paper [15].

5 Private Equity Recommitment as RL problem

As described in Section 3, the PERP can be solved using two main methodolo-
gies. While the first one relies on cashflow forecasting, the second one engineers
recommitment functions only using past and current quantities from portfolios.
Instead of building explicitly these functions, one could consider a Markov De-
cision Processes (MDP) to model a recommitment system and searches for the
best policy in order to maintain a target investment degree while minimizing the
risk of default.
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Algorithm 1 PPO-clip version
1: Initialize policy parameters θ1 and value function parameters φ1

2: for k ∈ {1, ...,M} do

3: Sample a set of trajectories {τi}Mi=1 using the policy πθk
4: Create a batch B of transitions (sit, a

i
t, r

i
t) ∀t ∈ {1, ..., |τi|} ∀i ∈ {1, ...,M}

5: Compute rewards-to-go R̂it, i.e. rewards from action ait, ∀t ∈ {1, ..., |τi|} ∀i ∈ {1, ...,M}
6: Estimate the advantages A

πθk (sit, a
i
t) using the value function Vφk

7: Perform policy update:

θk+1 = argmax
θ

1
M

M∑
i=1

1
|τi|

Ti∑
t=1

[
min

(
Aπθ (sit, a

i
t)

πθ(a
i
t|s
i
t)

πθold
(ait|s

i
t)
, g
(
ε, Aπθ (sit, a

i
t)
))]

with g
(
ε, Aπθ (sit, a

i
t)
)
= clip

(
πθ(a

i
t|s
i
t)

πθold
(ait|s

i
t)
, 1− ε, 1 + ε

)
8: Perform value function update by minimizing mean-squared error:

φk+1 = argmin
φ

1
M

M∑
i=1

1
|τi|

Ti∑
t=1

[
Vφ(s

i
t)− R̂

i
t

]2
9: end for

5.1 Modelling

Fig. 1 illustrates how the PERP can be turned into a Reinforcement Learning
problem. Each state st represents the portfolio position at time t and contains
the following information:

– ID(P, t): Investment degree at time t
– D(P, t): Distributions obtained from divestments at time t
– CC(P, t): Capital called at time t
– UC(P, t− 24): Uncalled capital from commitment made 24 quarters ago
– Cash(P, t): Portfolio cash at time t
– NAV (P, t): Net Asset Value at time t

The state st gives us the opportunity to control the amount of recommitted
capital at time t, i.e., the continuous action at depicted in Fig. 1. So far, the RL
model is trivial to obtain. However, we need to be extremely cautious regard-
ing the reward provided to the agent. Although we could define the reward by
minimizing the deviation to the ideal investment degree as done in Equation 2,
there is no control on the risk of default. Two alternatives open to us: (1) either
we train on multiple portfolios per episode and adjust the objective using the
standard deviation or (2) we constrain the agent to remain below the fateful
boundary, i.e., ID(P, t) = 1.0. Needless to say, alternative (2) is more challeng-
ing for the agent but we argue that it will be more generalizable than alternative
(1). For this purpose, we define a local reward rvalidt and a global reward rIDτ .
While the former is applied after each action(recommitment), the second one
only occurs at the end of a valid episode. We recall that a valid episode ends
when the maximum number of steps has been reached. The agent is rewarded
after each action depending on whether the future state of the portfolio is valid:

rvalidt =

{
0 if ID(P, t+ 1) > 1
1 if else
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Fig. 1: Reinforcement Learning of private equity policies

If a situation of default happens, the episode is stopped and does not reach
the maximum number of steps allowed. The accumulated reward obtained dur-
ing the episode would finally correspond to the number of periods in which the
portfolio remained valid. This reward function strictly increases monotonically
to drive the agent to simply learn to provide valid episodes. Once the agent has
learnt to recommit, i.e., it reaches the maximum number of steps per episode, it

receives an additional and final global reward rIDτ =
T∑
t=1

ID(P, t) where T is the

maximal number of steps per episode. Note that the sum could be replaced by
the min to maximize the worst investment degree obtained during an episode.
Finally, the total reward of a valid episode is the accumulated local reward added
to the shifted global reward:

rτ = rIDτ × 10(digits(T )+1) +

T∑
t=1

rvalidt (5)

where digits(T ) is the number of digit of T . For an episode lasting 100 steps,
#digit(100) = 2. This shifting mechanism is a constraint handling approach to
make sure that non-valid episodes are guaranteed to receive a total reward lower
than valid ones.

5.2 Synthetic cashflows

Private equity data is a sensitive topic. Private equity players generally protect
their rich cashflow histories. Although some financial data providers propose
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commercial libraries for very specific periods and economies, their data are gen-
erally incomplete. Historical cashflows’s data capture the fund’s dynamics which
is an essential information for training. Multiple works including [18] and [12] re-
lied on commercial libraries to draw conclusions or train their own model. In this
work, we adopt another strategy to simulate portfolio evolution over time. Since
1973, the Yale University’s endowment has been investing in private equity using
a methodology for modelling illiquid assets proposed by Takahashi and Alexan-
der (see [16]). Referred to as the mother of all cashflows’s models, this Yale-model
can be applied to private equity and real asset funds (e.g. natural resources and
infrastructures). Although, according to Takahasi and Alexander, the generated
projections fit historical data, the cashflows are modelled as deterministic which
limit their applicability.

Instead of depending on a commercial solution to acquire historical cashflows
which are often expensive and incomplete, synthetic fund cashflows have been
preferred in this work as they represent a more practical solution. This is the
reason why we decide to rely on an alteration of the Yale-model to make it
probabilistic. These synthetic cashflows are created by funnelling data generated
by the robust and tried-and-tested, albeit over-simplistic, Yale-model through a
noise-adding algorithm to construct a new dataset. The resulting dataset shows
the statistical features and the useful patterns needed for capturing the liquidity
risks associated with portfolio of funds. The synthetic cashflows considered in
this work have been provided by T.Meyer, an expert in private equity and co-
author of this paper.

6 Experimental setups

In order to fairly evaluate the resulting recommitment policies with the state of
the art, simulations have been performed according to the parameters described
in [18]. Due to the lack of secondary market, a portfolio cannot be bought in-
stantaneously. We empirically created initial but mature portfolios over a year
by committing equal capital to 16 randomly selected private equity funds. We
also apply 30 % initial overcommitment in setting up all portfolios to be in line
with the experiments performed in [18].

A portfolio simulation consists in recommitting some capital to new selected
fund every quarter. The amount of capital is determined by the current policy
sampled from the critic network (see Algorithm 1). Table 1a details the simu-
lation parameters while Table 1b described the PPO-clip parameters. A single
portfolio simulation last 104 quarters, i.e., 26 years. Capital is recommitted uni-
formly into 4 randomly selected funds. The number of portfolio simulations is
therefore equal to the number of episodes:

#episodes =
steps per epoch× epochs

104
= 125000

Strategies DZi(P, t) for i ∈ {1, 2, 3} proposed in [18] have been evaluated
with the same parameters and over the same period. All experiments presented
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in this paper were carried out using the HPC facility of the University of Lux-
embourg [17]. The python library SpinningUp [1] has been considered for the
PPO-clip implementation. A distributed implementation using OpenMPI [5] has
been considered to work with multiple environment in parallel. The discount pa-
rameter γ has been set to 1.0 since an episode’s length is finite and last 26 years.
The clip ratio ε has been set to 0.2 and represents how far can the new policy
go from the old policy while still improving the objective. PPO-clip ’s networks,
i.e., actor and critic have both two hidden layers of 64 nodes. The ReLU function
[2] has been chosen as activation function.

Table 1: Parameters
Parameters Training Validation

Cashflows frequency quarterly quarterly

Investment period 26 years 26 years

Funds per recommitment 4 4

Fund selection random random

Number of
simulated portfolios

#episodes 1000

(a) Simulation parameters

Parameters Value

steps per epoch 26000

gamma 1

epochs 500

# episodes 500

clip ratio ε 0.2

pi lr / vf lr 3e−4 / 1e−4

hidden layers [64, 64]

(b) PPO-clip parameters

7 Experimental results

With regards to the experimental setups described in the previous section, Fig. 2
illustrates the average rewards recorded during policy optimisation/training. One
can easily observe that the PPO-clip algorithm required few epochs to generate
valid policies. The average rewards curve then steadily increases to reach what
we can consider as a plateau in terms of improvements. Indeed, we can note
periodic falls indicating that the algorithm have strong difficulties to improve
more significantly the investment degree without breaking the cash constraint.
When arrived at the rupture point, a policy yielding non-valid episodes is more
likely to be generated leading to a steep fall in terms of overall rewards. When
a fall occurs, the algorithm tries to recover until the next rupture. This pattern
can be easily oberved in Fig. 2. Due to the shifting constraint handling approach
implemented in this work, non-valid and valid episodes do not have the same
reward scale which explains these deep reward falls every time the algorithm
encounters a non-valid episode.

The best policy obtained after training is depicted in Fig. 2. In order to vali-
date results, the obtained policy has been applied on a test set of 1000 portfolios.
After recording the investment degree evolution and the validity of each port-
folio, the average investment degree as well as the surrounding 95% confidence
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Fig. 2: Evolution of the average rewards per epoch

interval have been computed and are depicted in Fig. 3. We first observe that
the percentage of overinvested portfolios remains extremely low, i.e. ≈ 0.7%.
The investment degree varies strongly during the first years 6 years going from
0.4 to almost 1.0. After the first 6 years, the average investment degree slightly
increases to remain stable around 0.9.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Years

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.2 0.2 0.2 0.2 0.4 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Average Investment Degree

Percentage of overinvested portfolios

Fig. 3: Best policy obtained with the PPO-clip algorithm

We now compare the investment degree obtained with state-of-the-art strate-
gies engineered in [18], namely DZi for all i ∈ {1, 2, 3}. Each DZi have been
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applied on the same test set. Table 2 reports the average investment degree,
the standard deviation of the investment degree and the fraction of overinvested
portfolios obtained for each strategy including the best policy recommitment
PPO − clipbest. Although the active recommitment period only lasts 26 years,
we have still recorded the investment degree until portfolios were totally divested
(38 years) to observe if there is no delay effect when applying a specific strategy.
None of the 3 strategies have generated invalid portfolios. The investment degree
reached by DZ1 and DZ2 remains low, i.e., below 0.6. Nevertheless, DZ3 ob-
tained the best results among the 3 strategies as reported in [18]. The recommit-
ment policy PPO−clipbest outperforms the 3 strategies by reaching a maximum
investment degree above 0.8. Nonetheless, the DZ3 reports better results during
the first years as show in Fig. 4. The initial condition of the portfolio seems to
be a challenge for the recommitment policy. Nevertheless, it is well-know in the
literature that portfolio inception is a problem on its own. Therefore, we are not
surprised by this under-performance at the beginning of the portfolio lifetime.
In [18], authors discarded the first three years of the portfolio’s lifetime to avoid
the influence from the initial portfolio formation period.

Regarding the percentage of overinvested portfolios, it comes as no surprise
to encounter some invalid portfolios when getting closer to ID(P, t) = 1.0. This
is due to cashflow variability which is very difficult to predict. An alternative
would be to replace the strong cash constraint by a soft one taking the form
of an additional objective. Most of the LP investors generally own multi-class
asset portfolios. If liquidity is missing due to an unexpected capital calls, more
liquid assets could be sold. Of course, such a situation should be tempered and
the injected cash required to satisfy capital calls should be minimized. For this
purpose, one could consider a multi-objective reinforcement learning algorithm.

8 Conclusion

Recommitting into new PE funds is crucial for LP investors to maintain high
allocation to private equity. Current methodologies rely on cashflow forecast-
ing and over-simplistic approaches which are lacking of flexibility. Although this
problem is a key of major importance, few works have attempted to develop a ro-
bust and flexible recommitment system. Perhaps, this is due to the lack of data.
This is the reason why we adopted a different strategy consisting in learning
recommitment policies through Reinforcement Learning. Using synthetic cash-
flows build from the traditionnal but proven Yale-model, we applied Proximal
Policy Optimisation to the Private Equity Recommitment Problem to maximise
the investment degree while avoiding cash shortage situations by constraining
the agent. Results obtained after training confirm that the recommitment policy
outperform the strategies engineered in [18] while limiting the fractions of invalid
portfolios. This work was a first proof of concept and subsequent experiments
will be performed using different RL algorithms. Future works will investigate
a strategy to handle the cash constraint more efficiently. Another avenue for
research would be to model the cash constraint as a soft constraint, typically by
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DZ1 DZ2 DZ3 PPO − clipbest
years mean std invalid (%) mean std invalid (%) mean std invalid (%) mean std invalid (%)

0 0.07 0.02 0.00 0.07 0.02 0.0 0.07 0.02 0.0 0.07 0.02 0.0
1 0.29 0.03 0.00 0.29 0.03 0.0 0.29 0.03 0.0 0.30 0.03 0.0
2 0.52 0.04 0.00 0.52 0.04 0.0 0.52 0.04 0.0 0.55 0.03 0.0
3 0.68 0.06 0.00 0.69 0.04 0.0 0.69 0.04 0.0 0.75 0.03 0.0
4 0.73 0.06 0.00 0.75 0.04 0.0 0.75 0.04 0.0 0.83 0.03 0.0
5 0.74 0.07 0.00 0.76 0.04 0.0 0.76 0.04 0.0 0.85 0.04 0.0
6 0.74 0.07 0.08 0.71 0.05 0.0 0.71 0.05 0.0 0.81 0.05 0.0
7 0.71 0.08 0.20 0.63 0.05 0.0 0.63 0.05 0.0 0.74 0.05 0.0
8 0.71 0.07 0.20 0.56 0.04 0.0 0.57 0.05 0.0 0.70 0.04 0.0
9 0.75 0.05 0.20 0.54 0.03 0.0 0.56 0.03 0.0 0.72 0.04 0.0
10 0.80 0.05 0.20 0.56 0.03 0.0 0.58 0.03 0.0 0.76 0.03 0.0
11 0.84 0.05 0.23 0.58 0.02 0.0 0.60 0.02 0.0 0.79 0.03 0.0
12 0.85 0.05 0.40 0.59 0.02 0.0 0.62 0.02 0.0 0.81 0.03 0.0
13 0.85 0.05 0.58 0.59 0.02 0.0 0.62 0.02 0.0 0.81 0.03 0.0
14 0.84 0.06 0.70 0.58 0.02 0.0 0.60 0.02 0.0 0.79 0.03 0.0
15 0.85 0.06 0.70 0.56 0.02 0.0 0.58 0.02 0.0 0.77 0.03 0.0
16 0.85 0.06 0.70 0.55 0.02 0.0 0.57 0.02 0.0 0.76 0.03 0.0
17 0.86 0.06 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.76 0.03 0.0
18 0.86 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.77 0.02 0.0
19 0.86 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0
20 0.85 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.79 0.02 0.0
21 0.85 0.08 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0
22 0.85 0.08 0.70 0.54 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0
23 0.85 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0
24 0.86 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0
25 0.86 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0
26 0.85 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.78 0.02 0.0
27 0.81 0.09 0.70 0.53 0.02 0.0 0.56 0.02 0.0 0.76 0.02 0.0
28 0.73 0.08 0.70 0.49 0.02 0.0 0.52 0.02 0.0 0.71 0.03 0.0
29 0.62 0.08 0.70 0.44 0.02 0.0 0.46 0.02 0.0 0.62 0.03 0.0
30 0.50 0.07 0.70 0.37 0.02 0.0 0.39 0.02 0.0 0.51 0.03 0.0
31 0.38 0.06 0.70 0.29 0.02 0.0 0.31 0.02 0.0 0.40 0.03 0.0
32 0.27 0.05 0.70 0.21 0.02 0.0 0.22 0.02 0.0 0.29 0.03 0.0
33 0.17 0.04 0.70 0.14 0.02 0.0 0.14 0.02 0.0 0.19 0.03 0.0
34 0.09 0.02 0.70 0.07 0.01 0.0 0.08 0.01 0.0 0.10 0.02 0.0
35 0.04 0.01 0.70 0.03 0.01 0.0 0.03 0.01 0.0 0.05 0.01 0.0
36 0.01 0.01 0.70 0.01 0.01 0.0 0.01 0.01 0.0 0.02 0.01 0.0
37 0.00 0.00 0.70 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0
38 0.00 0.00 0.70 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0

Table 2: Summary statistics of the investment degree in recommitment
strategies



14 E. Kieffer et al.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Years

0.0

0.2

0.4

0.6

0.8

1.0

1.2
PPO-clip

DZ1

DZ2

DZ3

Fig. 4: Comparison between de Zwart’s strategies [18] and the policy obtained
with the PPO-clip algorithm

considering it as a second objective. Both opportunity cost and cash shortage
are two conflicting objectives. Finally, this work could be extended to take into
account multi-class asset portfolios.
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