

TRUSTWORTHY AI

FOR STRATEGIC INVESTMENT DECISION REGARDING CREDIT DEFAULT SWAPS (CDS) USING HPC

26/Sep/2023

UNIVERSITÉ DU

Caesar Wu

Content

- <u>Strategic investment Decision</u> for Credit Default Swaps (CDS) Using HPC
- AI/ML is considered to be a black box, <u>How to Trust?</u>
- <u>Prediction Model:</u> GBM/XGBM, Transformer
- <u>Dataset</u> and Sub-dataset: Technology and Telecommunication Sectors
- **Explanatory Experiment Results**
- Results <u>Analysis</u>
- Conclusion and <u>Future Research</u> Direction

Research Problem

How Can We Predict CDS Price For Decision? How Can We Trust the AI Results? How Can We Explain the Result?

Thucydides 460-400 BCE

What is **Trust** and **Trustworthy AI (TAI)**?

Thucydides' conclusion:

"The vital difference between winner and loser = Leadership quality"

What is Leadership quality?

- 1.) Ability to process massive amount of information or data (AI)
- 2.) Quickly deciding what to decide (Trustworthy)
- 3.) Carry action with a resolution.

"The philosophers have only interpreted the world, in various ways. The point, however, is to change it."

Trustworthy AI =
$$\frac{Trust}{Distrust} > 0$$

Why Does TAI Matter?

Create A Novel Framework For Trustworthy AI

How To Trust AI?

Why Some Trustworthy Properties?

Explainable AI (XAI) for Decision Context

Decision Context or Applications:

- Healthcare and medicine:
- Autonomous Vehicles:
- Finance and Banking:
- Customer Services and Support:
- Cybersecurity:
- Education
- Legal and Compliance:
- Criminal Justice and Public Safety:
- Environment and Conservation:
- Social Media & Content moderation:
- Government and Public Services:
- Politics:
- HR:
- Language Translation:
- Manufactory
- Emergency Response

Examples: diagnostic assistance, treatment planning, drug discovery, patient remote monitoring (nearly all) self-driving, safety navigation, location mapping (security, reliability, robustness, accuracy) fraud detection, risk assessment (security, reliability, accuracy) virtual assistant (reliability, robustness, usability) threat detection, anomaly detection (security/privacy, reliability, robustness) personalize learning (usability, availability) compliance monitoring, public order (justice, fairness, transparency) court cases decision, legal aid (justice, fairness, transparency) wildlife protection, & monitoring, weather forecasting (reliability, accuracy) content filter (safety, accuracy, accountability) resources allocation, public project bidding (transparency, accountability) political campaign, election (transparency, fairness) candidate selection (fairness, justice) language cross different culture (reliability, usability, availability) AI-Driven automation (reproducibility, reliability, robustness, usability, security) AI- Assist optimizing emergency response (reliability, availability, usability, accountability)

How to Frame TAI?

"The AI, then, did not reach conclusions by
 reasoning as humans reason; it reached conclusions by applying the model it developed."

How To Implement TAI?

Types of Representation Space?

Seven Types or Three Groups of models

1. Descriptive

- Explain: To provide explanations for empirical phenomena (Create Value)
- Communicate: To relate knowledge and understand (Create Value)

2. Inference

- Reason: To identify conditions and deduce logical implications (Evaluation)
- Explore: To investigate possibilities and hypotheticals (Evaluation)

3. Predictive

• Design:

• Predict:

- Act:
- To choose features of institutions, polices and rules (Selection)
- To guide policy choices and strategic actions (Selection)
- To make numerical and categorical predictions of future (Selection)

SCOTT E. PAGE THE MODEL THINKER what you need to know to make data work for you

Optimizer: Domingo's Five Schools of Thought on Machine Learning

Central Problem	Key Algorithms
Reasoning with symbols	Decision Trees (If-then) or Tree-Based Model
Analysing perceptual information	Neural Networks (Perceptron, Deep Networks, Transformers)
Managing uncertainty	Bayesian Networks (It has the statistics dependence on data)
Discovering new Structure	Genetic Programs (natural selection)
Exploiting Similarities	Nearest Neighbours (previous cases)

We Tested Two Different Models

1. Tree-Based Models

- Random Forest
- Gradient Boosting Machine (GBM)
- Extreme GBM (Xgbm)

2. Transformer Models

- Vanilla or Baseline model
- TimesNet,
- PatchTST,
- Crossformer

 $\nabla f = \frac{1}{n} \sum_{i} \nabla L(x_i)$

UNIVERSITÉ DU LUXEMBOURG

Why Tree-Based Models?

- Won many Kaggle's Machine Learning competitions
- Tree-based models have a relatively long history
- Relatively easy to explain the results
- Handle missing values effectively
- Be capable of handling large datasets

Boosting Iteration

- 1. Adaptive Boosting (AdaBoost)
 - 2. AdaBoost Regression Task (AdaBoost.RT)
 - 3. Log-Likelihood (LogitBoost)
 - 4. Random Under Sampling (RUSBoost)
 - 5. Synthetic Minority Over-Sampling Technique (SMOTEBoost)
- **2** 6. Gradient Boosting Machines (GBM)
 - 7. Extreme Gradient Boosting (XGBoost)
 - 8. Light GBM (lightGBM)
- 3 9. Categorical Boosting (CatBoost)
 10.Linear Programming Boosting (LPBoost)

Why Transformer Models?

- Cutting Edge Technique
- Parallelization
- Long-Range Dependencies
- Flexibility
- Pre-Training and Fine-Tuning
- State-of-the-Art Performance

Generative Pre-Trained Transformer (GPT)

GBM Model

Loss function $L(\theta)$ respect to coefficient θ

$$L(\theta) = \sum_{i=1}^{N} L[y_i, f(x_i; \theta)], \quad \theta \in \mathbb{R}^p$$
$$\theta^* = \arg\min_{\theta} L(\theta), \quad \theta^* = \sum_{b=0}^{B} \theta_b,$$
$$\{\theta_b\}_{b=1}^{B}$$

 $\theta_b = \theta_{b-1} + \gamma \Delta \theta_{b-1}$, γ = step size

 $\Delta \theta_{b-1} = \left(-\frac{\partial L(\theta)}{\partial \theta} \right)$

Loss function
$$L(f)$$
 respect to prediction function f

$$L(f) = \sum_{i=1}^{N} L[y_i, f(x_i; \theta)],$$

$$f^* = \arg\min_f L(f), \quad f_B = \sum_{b=0}^{B} f_b , f_b \in \mathbb{R}^N$$

$$f = \{f(x_i)\}_{i=1}^N$$

$$f_b = f_{b-1} - \gamma g_b, \quad \gamma = \text{step size}$$

$$g_b = \left\{ \left[\frac{\partial L(f)}{\partial f} \right]_{f=f_{b-1}(x_i)} \right\}_{i=1}^N$$

What Does **GBM** Really Mean?

What do we have?

A Bird's Eye View of Dataset From IMF

Sample Data Scatter Plot for Credit Default Swaps 1/Jan/2006 - 29/Dec/2017

Different Types of CDS

0.00	PX1	PX2	PX3	PX4	PX5	PX6	PX7	PX8	PX9	PX10	year	month	day	
0.08 - 0.06 - 0.04 - 0.02 - 0.02 - 0.00		Corr: 0.983***	Corr: 0.953***	Corr: 0.924***	Corr: 0.892***	Corr: 0.867***	Corr: 0.848***	Corr: 0.837***	Corr: 0.829***	Corr: 0.822***	Corr: -0.011	Corr: -0.000	Corr: -0.009	PX1
10000 - 5000 -	•** •		Corr: 0.990***	Corr: 0.972***	Corr: 0.948***	Corr: 0.928***	Corr: 0.912***	Corr: 0.903***	Corr: 0.896***	Corr: 0.889***	Corr: -0.021*	Corr: -0.004	Corr: -0.012	PX2
12000 - 8000 - 4000 -	•*	, ·		Corr: 0.994***	Corr: 0.979***	Corr: 0.964***	Corr: 0.951***	Corr: 0.944***	Corr: 0.937***	Corr: 0.931***	Corr: -0.031**	Corr: -0.007	Corr: -0.014	PX3
12000 - 9000 - 6000 - 3000 -				l	Corr: 0.995***	Corr: 0.987***	Corr: 0.978***	Corr: 0.973***	Corr: 0.968***	Corr: 0.964***	Corr: -0.041***	Corr: -0.010	Corr: -0.015	PX4
9000 - 6000 - 3000 -			-	<u>,</u>	Ĺ	Corr: 0.997***	Corr: 0.993***	Corr: 0.989***	Corr: 0.986***	Corr: 0.983***	Corr: -0.049***	Corr: -0.013	Corr: -0.014	PX5
10000 - 7500 - 5000 - 2500 -	s.		<i>.</i>	<u>,</u>	_		Corr: 0.999***	Corr: 0.997***	Corr: 0.995***	Corr: 0.993***	Corr: -0.053***	Corr: -0.015	Corr: -0.015	PX6
10000 - 7500 - 5000 - 2500 -			<i>.</i>	.	_	<u> </u>	h	Corr: 1.000***	Corr: 0.999***	Corr: 0.997***	Corr: -0.057***	Corr: -0.016	Corr: -0.016	PX7
10000 - 7500 - 5000 - 2500 -			.		_ *	· ·	· ·		Corr: 1.000***	Corr: 0.999***	Corr: -0.057***	Corr: -0.016.	Corr: -0.016.	PX8
10000 - 7500 - 5000 - 2500 - 0 -	s		~	· ·	<u>,</u>	<u>,</u>			l	Corr: 1.000***	Corr: -0.058***	Corr: -0.017.	Corr: -0.017.	PX9
10000 - 7500 - 5000 - 2500 -	м.		<i></i>	<i>.</i>	_	· ·	· ·	· ·	<u>,</u>		Corr: -0.058***	Corr: -0.017.	Corr: -0.017.	PX10
2020 - 2018 - 2016 -	•										$\mathcal{W}\mathcal{W}$	Corr: -0.094***	Corr: -0.020*	year
12.5 - 10.0 - 7.5 - 5.0 - 2.5 -		ŀ.	ŀ.	ŀ.	ŀ.	ţ.	ŀ.	ŀ.	₿÷ '	Ē: ·			Corr: 0.008	month
30 - 20 - 10 - 0 -	č	F	j	k			į				day

Sub-Dataset: Technology Sector A particular Company

Credit Default Swaps Scatter Plot for Redcode: 5EDDA9

Experiment Setup

Sub-dataset = 37,526 observations, 139 features

Increase:	Spread 5 By 10,000: common practice
Remove:	Dummy variables, left with 117 features
Split:	70:30 ratio, 70% for training, 30% for testing
CV fold:	5
HPC Config:	128 nodes + 256GB RAM

GBM Results

usersystemelapsed36.000.4799.82gbm(formula = spread5 ~ ., distribution = "gaussian", data = cds_train,
n.trees = 1000, interaction.depth = 1, shrinkage = 0.01, cv.folds = 5)A gradient boosted model with gaussian loss function.1000 iterations were performed.The best cross-validation iteration was 1000.There were 117 predictors of which 32 had non-zero influence.

RMSE = 112.5478

user	system	elapsed				
50.30	0.56	147.31				
gbm(formula :	= spread5 ~ . <i>,</i> c	listribution = "gaussian", data = cds_train,				
<i>n.trees = 500</i> , interaction.depth = 3, shrinkage = 0.1, cv.folds = 5)						
A gradient boosted model with gaussian loss function.						
500 iterations were performed.						
The best cross-validation iteration was 500.						
There were 117 predictors of which 111 had non-zero influence.						

RMSE =46.37817

The GBM Results Comparison

Parameters	Experiment 1	Experiment 2	Final Results
Distribution	Gaussian	Gaussian	Gaussian
# trees	1000	500	800
Shrinkage or learning rate	0.01	0.1	0.3
Interaction depth	1	3	5
# min. nodes	1	3	5
cv. fold	5	5	5
# predictors or features	117	117	117
Non-zero influence	32	111	117
Bag fraction	1	1	0.85
Train fraction	1	1	1
CPU usage time	36.00	50.30	111.31
System time	0.47	0.56	0.20
Elapsed time	99.82	147.31	132.05
RMSE	112.548	46.372	29.512 🔶

Is it optimal?

Xgbm Run 243 Grid Points Hyperparameter Search on HPC

		۲0.10	0.30	ן0.50
Learning rate: (0.1, 0.3, 0.5)		5	7	9
Depth of trees: max # of tree depth (5,7,9)	arid noints =	3	, 5	7
Min child weight: min # of observation in each terminal node (3,5,7)	91 tu p o titos	0.65	0.80	1
Subsample: controls a fraction of the training observation (0.65, 0.8, 1) Column Sample: percentage of columns (0.65, 0.8, 1)		0.65	0.80	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $=3^5=243$

H	Parameters	CPU usage time	System time	Elapsed time	
	HPC platform (sec.)	593,717.98	69.55	4,713.02	
	Shrinkage or learning rate	Max tree depth	Min. rows /each end node	k fold CV	
	0.10	9	1	5	
	Subsample for each tree	Column sample	Number of trees	Min RMSE	
	0.80	1	250	25.70	

Total Trees = 250 X 243 = 60,750

Can We Trust Result?

$[\forall C] \exists [R, D, O] \vDash (\exists P)$

What is explanation / interpretation?

Many Ways to Explain From Decision-Making Perspective

Strategic

Tactical

- 1. Feature Importance: VI 1. Prototype-
- 2. Global Explanations: PDP, ICE
- 3. Counterfactual Explanation
- 4. Meta-Explanations (Ensemble)
- 5. Causal Explanations
- 6. Integrated Gradients
- 7. Graph-based Explanations
- 8. Concept-Based Explanation

- 1. Prototype-based Explanation
- 2. Confidence Intervals
- 3. Model-Agnostic Explanation
- 4. Surrogate Model
- 5. Certified Explanations
- 6. Rule-Based Explanation
- 7. Layer-wise relevance propagation (LRP)
- 8. Model Debugging

Operational

1. Local explanations LIME, SHAP

UNIVERSITÉ DU LUXEMBOURG

- 2. Instance-Based Explanation
- 3. Sensitivity Analysis
- 4. Simulatability
- 5. Behavioural testing
- 6. Activation Maximization
- 7. Interactive Dashboards
- 8. Attention mechanisms

TAI: We Use Five Techniques

Global

- Variable Importance (VI)
- Partial Dependent Plot (PDP)
- Individual Conditional Expectation (ICE)

Local

- Local Interpretable Model-agnostic Explanations (LIME)
- Shapley Values (SHAP)

Math Expressions of All Explanatory Techniques

• Feature importance (VI)

$$MDA(X_i) = \frac{1}{n} \sum_{j=1}^n (f(X) - f(X_{ij}))$$

n is the number of permutations, **X** is the original dataset X_{ij} is the dataset with the i-th feature values permutation in the j-th permutation

• PDP

$$\hat{f}_s(x_s) = E_{X_c}[\hat{f}_s(x_s, X_c)] = \int \hat{f}_s(x_s, X_c) d\mathbb{P}(X_c)$$

$$\widehat{f}_s(x_s) = \frac{1}{n} \sum_{i=1}^n \widehat{f}\left(x_s, x_c^{(i)}\right)$$

 x_s is the feature , X_c other features

• ICE (Individual Conditional Expectation)

$$\hat{f}_{S}^{(i)} = \left\{ x_{s}^{(i)}, x_{c}^{(i)} \right\}_{i=1}^{N}; \ \hat{f}_{cent}^{(i)} = \hat{f}^{(i)} - 1\hat{f}\left(x^{a}, x_{c}^{(i)}\right)$$

 x^a is the anchor point; \hat{f} is fitting model

LIME

$$explain(x) = arg \min_{g \in G} [L(f, g, \pi_x) + \Omega(g)]$$

UNIVERSITÉ DU

LUXEMBOURG

x = instance

- g = the model (e.g., linear regression model)
- L= loss function

f = predictive model

 $\Omega(g)$ = a model complexity

• SHAP

$$g(z') = \phi_0 + \sum_{j=1}^M \phi_j z'_j$$
, $z' \in \{0, 1\}^M$

g= explanation model $z' \in \{0, 1\}^M$ is the coalition vector M is the max coalition size $\phi_j \in \mathbb{R}$ is the feature attribution for a feature j

Variable Importance

Variable Importance

PDP

ICE of Equity Value

ICE of Price Sale

ICE of Default

LIME

UNIVERSITÉ DU LUXEMBOURG

Before 2008 Financial Crisis

After 2008 Financial Crisis

SHAP

Shapley value prediction explanation

Conclusion

We can trust AI by the law of nature, Can we trust AI by the law of heart?

Challenging!

Is a reason reasonable? :

 $\boldsymbol{P} \vDash \boldsymbol{\pi}_A \vDash \boldsymbol{\pi}_B \vDash \boldsymbol{\pi}_C, \cdots,$

What is the issue of AI/ML?

Correlation

Causation

However, There is A Catch

Paradox or Dilemma?

Future Research: Causal Inference

Future Research Direction

