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HPC/Advanced Computing Challenges

Infrastructure Platform EAppIications

Post Moore Era Architectures Programmability ]

IA and Deep Learning
eParallel Balancing, I/O, Memory Challenges *New Languages and Compilers
Dark Sillico Computing Efficiency Algorithms Implementation
Exascale i i

Data Movement and Processing (In Situ, In Use of Interpretators (as Python)

Computer Efficiency (Processing/Energy Consumption) Transit, Workflows)
Hybrid Platforms (CISC+RISC+Others) HPC as a Service . .

Community versions
*TPUs, ARM... eScience Gateways, Containers
Data Management / Data Centric Viz as a Service (In Situ) Open Algorithms, Open Data
Advanced Networks Protocols Utra Scale Applicatons
Fog/Edge IA and Deep Learning Frameworks D Quantum Applications
HPC@Pocket Quantum Computing D and more...

... Quantum Computing



Top Production Applications in Advanced Computing
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https://www.g2.com/articles/quantum-computing

Computer Architecture Support

l.e. QC Support
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https://eca.cs.purdue.edu/index.html

Main Topics

 Some Computer Architecture Features
* Open Questions (and our contribution)
* From HPC Architecture to Advanced Computing Architecture

* And more Open Questions..



CPU/GPU+TPU Platform

CPU Thead  Thread  Theead
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Memory
A.l)
Parallelized scalar multiplication * Numerical Methods addressed Large
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Simulation + Visualization using CPU+GPU

Multi-GPU DSPH Analysis Project Video
N. Gutierrez, S. Gelvez, J. Chacon, |. Gitler and C.Barrios
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Open Question 1: How to exploit better
parallelism to support computing and
visualization (Al and Simulation)?



Production visualization: “Pure Parallelism”

From: Hank Childs

Lawrence Berkeley Lab & UC Davis



Production visualization with “pure parallelism”:
same problems that processing

Pure parallelism emphasizes | /O and memory
High Cost (Efficiency, Performance, Energy)

Difficult to programming and use

Hardware Disruption
Accelerators (GPUs, ARM, Xeon Phi)
Specific Issues (i.e. TPUs, 3D Memory)



In Situ Strategies:




Loosely Coupled

= |/O layer stages data into
secondary memory
buffers, possibly on other
compute nodes

= Visualization applications
access the buffers and |
obtain data N ___ Possible network boundary_

= Separates visualization
processing from
simulation processing

= Copies and moves data

Lawrence Livermore National Laboratory UI_-

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-ACS2-07NA27344,

Demands Dynamic Memory




Thightly Coupled

= Custom visualization routines are
developed specifically for the
simulation and are called as
subroutines

Visualization
* Create best visual Routines
representation |
e Optimized for data layout l ,
4 images, etc

= Tendency to concentrate on very
specific visualization scenarios

= Write once, use once

Demands Dynamic Memory
and a large amount of memory
capabilities

Lawrence Livermore National Laboratory : lIL-

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-ACS52-07NA27344.



Hybrid

= Simulation uses data adapter
layer to make data suitable for
general purpose visualization

Iibrary Data Adapter
= Rich feature set can be called
by the simulation General

Visualization Library

= QOperate directly on the
simulation’s data arrays when
possible

= Write once, use many times

’/r images, etc

AT\ Demands Dynamic Memory, a
e S)

large amount of memory
capabilities and specific
algorithm approach

Lawrence Livermore National Laboratory UL—

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.



Simulation
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NVIDIA.

And In Transit?

Analysis and Visualization is run on 1/O
nodes that receive the full simulation
results but write information from
analysis or provide run-time
visualization

GROMACS .4

FAST. FLEXIBLE. FREE.



Our Contribution

A (new) Algorithm Analytics
Performance evaluation for seeds, steps, buffer depth.
A definition of metrics.
A new, more detailed evaluation.
After those, a new algorithm.
Platforms with In-Situ and In-Transit Strategies

i Tightly and Hybrid Approach
Exascale
. Mixing Processing and Visualization Issues

Applications (Scientific Real Time)
GROMACS, NAMD, FlowVR...
High Availaible Autonomous Systems
Source: generated by code provided by VisLab Uni-KL. Rendered in Paraview. Specific Libraries and Frameworks
Ultrascale Software
Special In-Situ Tools (NVIDIA® Vislt)
Deep Learning Applications
Data Movement

049949

0.000e+00

Sergio Gelvez PhD. Thesis Visualisation Of Vector Fields In Parallel
Environments: In-situ Approach Over Heterogeneous Architectures (Advising
by K. Garth and C. J. Barrios, Collaborators: B. Raffin (INRIA) , J. Hernandez
(UniAndes) and B. Hernandez (NVIDIA)

roord ”ls =\ Super Computacién y Universidad de ' 0 Computer Graphics '
W
-7 @ GCaleulo Cientifico UIS los Andes IMDAQIN E : T(EﬂgSECEESEXﬁ?EEﬁ and HCI Group &z —

NVIDIA.




The (Post) Moore Era
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The Cambrian Explosion in Architecture for Al

Satoshi Matsouka Vision

Convolution Networks Recurrent Networks AR Netwroks Deep Learning New Networks

RS P

Nano Xavier FPGA

TPU V100

| SiP
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Open Question 2: How to exploit
Efficiently the Post Moore Architectures?



Virtualization or Containerization?
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Our Contribution: Performance Impact in Effective
Deployment

Nativo vs Singularity

* Definition of Computing Efficiency:

Nano .

30 * Interms of Energy + "computing element” +

25 processing

20 e Definition of Post-Moore Era Architectures

15 * Parallelism Support + Efficiency + Sustainability?
10 * Methodology to Analyze and (to predict) the impact of

o 5 containerization

0 anfl  _BRR) * Practical Approach to Scheduling Performance
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Pablo Rojas Thesis « Study of the deployment and execution of applications on post-moore
architectures » co-advising with L.A. Steffennel
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TPUs: Tensor Processing Units

Tensor Processing Unit (TPU) is an Al accelerator application-specific integrated circuit (ASIC) developed
by Google and NVIDIA specifically for neural network machine learning
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DPU Architecture

NVDIA DPU

Out-of-Band
Management Port Dual VPI Ports
Ethernet/InfiniBand:
1, 10, 25, 50,100, 200G

Packet Proc. ConnectX-6 Dx Security
Engines

Secure Boot

eSwitch Flow Steering / Switching

IPsec/TLS/CT Subsystem

Application Offload, NVMe-oF, T10-DIF, etc

Accelerators

Regular
Expression

SHA-2
(De-Dup)

»

Deflate/
Inflate

PCle Gen 4.0 Switch
12C, USB,
DAP, UART PCle Gen 4.0 - 16 lanes
Root Complex or Endpoint




Open Question 3: How to Achieve
Efficiency and Scalability in HPC
Architectures that Support Al and Big
Data?



Two Approach to Contribute to Deal with the
Question:

* Computing Architectural Approach
* Algorithm Approach
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COMPUTING ARCHITECTURAL APPROACH

The deep learning model training

algorithm requires a significant amount of

memory that often exceeds the

. capabilities of the GPU and, in some
What is the

problemg

cases, even the memory of the CPU.

New methods for training the model have

been created to solve this problem, such

The need to have increasingly efficient as Model Parallelism, Data Parallelism,

computational resources with better and Pipeline Parallelism. However, these

performance, among which are greater methods have required increasingly

processing capacity and memory specialized hardware that does not

available for the execution of the training necessarily reduce the memory footprint

of these models.. but distributes memory requirements
across devices such as servers, GPUs,

and TPUs.




COMPUTING ARCHITECTURAL APPROACH

BACKPROPAGATION
_< Error-backpropagation (VF(w,) , VF(w,) ) j—
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N
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COMPUTING ARCHITECTURAL APPROACH
MODEL PARALLELISM

GPU 1

Layer 4

GPU O GPU 2 GPU 3

PIPELINE PARALLELISM
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COMPUTING ARCHITECTURAL APPROACH

CPU OFFLOADING GPU Forward
o—0—0—0— 00—
g CPU Memory
GPU

= _. ‘. l‘ '. '.‘Backward

Back\lNard

#lﬁ r |
GPU

Data transfer stream

Ziq Z Ziq Ziy
! ! t t
CPU
t t ! !
e ] - Zis
GPU

Torres, L. A., Barrios, C. ., & Denneulin, Y. (2021). Computational Resource Consumption in Convolutional
Neural Network Training - A Focus on Memory. Supercomputing Frontiers and Innovations, 8(1), 45-61.

https://doi.org/10.14529/jsfi210104



Our Contribution:

A New Parallelization
Approach in Deep Learning
Using CPU/GPU
Architectures for Memory
Optimization

Thesis of Alejandro Torres co-advising with Yves Denneulin

Super Computacion y
Calculo Cientifico UIS

Computo Avanzado y a Gran Escala
Advanced and Large Scale Computing

CAGE Research group

N U C-A
&Z Tl — Université A
Grenoble Alpes
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Q,

N NG

C
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Is it possible to optimize memory usage in training
deep neural network models by distributing or
parallelizing the Pipeline between the CPU and the
GPU/TPU?

By distributing the Pipeline between the CPU and the
GPU/TPU, can better results be obtained in training
times while maintaining the accuracy of the model
prediction?

By having greater storage capacities in the CPU
memory to use it as an active actor, is it possible to
increase the size of the input batch and thus improve
the efficiency of the training?

Does using the CPU and GPU/TPU simultaneously
during training involve more or less energy
expenditure when comparing training time Vs.
Accuracy Vs. Power Consumption?



ALGORITHM APPROACH
Important Aspects:

Complexity of deep learning models.

Optimization of the search for
hyperparameters in large-scale
architectures.

Population based training
Generalized DL models
Evolutionary algorithms in PBT

Minimizing memory size in the
produced model.

Using Al to bring world-class specialist
expertise to everyones, at lower cost.

Expert care, anywhere.

Performance

— —] =

Hyperparameters O O O

Model[] ..... L D ..... L D ..... G

— = —

® Q. O.

D ................... U ..... A D ..... o

— — —

O o. ©O.
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ALGORITHM APPROACH

Our Contribution: Hyperparameters Approach

(a) Sequential Optimisation

Perton mance
0. Hyperparameters () . 0—0.. D * Better understanding of PBT-based training
D.. S D D ______ S U D _____ e D mechanisms  using  distributed  computational
eeh architectures
e () Population Based Training «  Framework that implements efficient and scalable
% r(? %1 o) Performance ) — — PBT mechanisms that, through evolutionary
R R R HWWIﬁ ﬁ ﬁ ﬁ algorithms, allows finding generalizable models that
— — — — minimize memory consumption.
ﬁ ﬁ ﬁ [Cj e * PBT techniques allow obtaining more optimal
_ _ — — ‘6’ Ie) ‘8'_.“,,.“:5’% Ie) generalized models that consume less memory,.
O-. O-. O-. o || N > e

Felix Mejia Thesis, Computational efficiency of the implementation of algorithms in Deep Learning applications for health
in large-scale architectures in co-advising with M. Riveill and Collaboration with J. A. Garcia.

b
Super Computacién y Computo Avanzado y a Gran Escala
Calculo Cientifico UIS Advanced and Large Scale Computing  UN IVERSITE &7 zlR—

CAGE Research group COTED'AZUR

b
UNIVERSITAT
BERN
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Quantum Processor Unit Architecture*

Inst. memory: P :
Array 1 s B

Op. in Slot 1

Inst. Reg: Slot 1
Decode & Issue Logic

des

L
8
Ty

PR—

Bacoll-
Color €O

High Data Rate
In port

*Simplest Approach
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Quantum Computing Over H

(a) | Local Machine |

Public Network

| QPU I

(b) l Interconnect ‘

| [ |
Node Node Node

. cPu ||| cpu |||| cPu |
. Qpu ||| apu |||| aPu |

(c) | Interconnect |

[ [ [
Node Node Node

| cPU ||/| cPu |||| cPU |
. QpPu ||| aru ||| aPu |
I I I

Quantum Interconnect

FIGURE 2. Three macroarchitectures for integrating quantum
computing with conventional computing. (a) A local machine
remotely accesses a QPU through public cloud network.
(b) A network of quantum-accelerated nodes communicate
through a common interconnect. (c) A network of quantum-
accelerated nodes communicate through both conventional

and quantum networks.

| Switch | | Switch |
Y
HPC-QC node /

Management HPC Node

A Ethernet or

InfiniBand
2
QC node 2
v o
o
Management Server Controller (FPGA)
; %] DACs/ADCs
HW Device 1 ES
- S Mixers / Modulators
HW Device 2
A
I HW Device n Analog
Carrier Signals
A 4 =
c
3
Out-of-band In-band

FIGURE 3. A component diagram representing the microarch-
itecture of a HPC-QC node with a common interconnect as
depicted in Figure 2(b). The diagram shows the major compo-
nents needed for the operation of a QPU within the HPC
node infrastructure. Individual components are grouped into
so-called out-of-band and in-band scopes and are placed on
the left-hand and right-hand side of the figure, respectively.
The QPU, which contains the qubits and is capable of proc-
essing quantum information, is depicted at the lower part,
whereas classical information processing components are
shown in the upper part of the figure. Several hardware (HW)
devices control the QPU environment, which has a direct
effect on qubit properties and thus the quality of execution
of instructions.

DEPARTMENT: EXPERT OPINION

Quantum Computers for High-Performance

“omputing

(i

Quantum ing systems are
variety of real- Id it T
are solved using i high-perfe

ping rapidly as powerful solvers for a
i many of these same applications

(HPC) systems, which

-pei
have progressed sharply through decades of hardware and software improvements.

Here, we present a perspective on the

and chall of pairing

quantum computing systems with modern HPC infrastructure. We outline
considerations and requirements for the use cases, macroarchitecture,

, and

models needed to integrate near-term

quantum computers with HPC system, and we conclude with the expectation that
such efforts are well within reach of current technology.

define the pinnacle of modern computing by
drawing on massively parallel

I I igh-performance computing (HPC) systems

power and workload in order to optimize overall sys-
tem performance.

This leading paradigm for HPC often relies on special
ized accelerators and highly tuned networks to opti-
mize data and k

By i quantum (QCs) repre-
sent a young yet remarkable advance in the science and
technology of computation that are often cited as rivals

whereby many computational nodes are connected by
high-bandwidth networks to support shared informa-
tion processing tasks. Existing computational nodes
also support highly concurrent execution with multi-
threaded processing, and technology trends indicate
that future node designs will integrate heterogeneous

or to state-of-the-art I high-per-
formance computing (HPC) systems. The source of this
proposed advantage of QCs derives from quantum
information processing in which information is encoded

hy physical systems such as atoms,
electrons, and photons.” These quantum physical sys-
tems present the unique features of quantum coher-
ence and quantum entanglement that permit quantum

the

g that include cen-
tral processing units (CPUs), graphics ing units
(GPUs), field-programmable gate arrays (FPGAs), and
other | ' The of

these future computational nodes must be tightly
integrated to balance data movement with processing

Please see the Acknowledgements section at the end of the
articke for a special statement regarding the copyright

02721732 © 2021 |EEE
Digital Object Idantifier 10.1709/MM 2021.3099140
Date of current version 14 Saptember 2021

Septermber/Cctober 2021

to reduce

time and memory needed to solve many problems from
chemistry, materials science, finance, and cryptanalysis
among other application domains. The advantage
afforded to quantum computing is therefore aptly
named the “quantum computational advantage,” and
there is now a fervent effort to realize quantum comput-
ing systems that demonstrate this advantage. Notably,
recent efforts have focused on besting the world's lead-
ing HPC systems to great effect ***

Many of the most promising applications of quantum
computing overlap strongly with existing applications
of HPC.® which begs the question of how QCs may be
integrated with modem HPC to accelerate these

Published by the IEEE Computer Society IEEE Micro
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Open Question 4: And Quantum
Computing?



Our Contribution: Quantum Computing Theory for

Quantum Computing Applications

Quantum Information Theory

Informatio
Theory

Quantum
Mechanic

Quantum
Informatio
Theory

g
k s Super Computacion y
‘/c @ UIE Calculo Gientifico UIS CAGE
ReSTIC

W

UNIVERSITE
DE REIMS
CHAMPAGNE-ARDENNE

Computo Avanzado y a Gran Escala

Research group

G. Diaz PhD. Thesis about Classica Resources Consumption in Quantum Computing Simulators (Co-
Advising with L. A. Steffenel)

Advanced and Large Scale Computing

Quantum
Processor

Quantum
Compiler

Problem Q Quantum

Definition Al Circuit \ 4
{H}
A :

Quantum

Simulator

Initialize the registers to
a superposition of Q states
number N, find anintegeri, | | -

strictly between 1 and N, Apply the inverse quantum
that divides N Fourier transform

Given an odd composite

The term quantum algorithm is generally used
for those algorithms that incorporate some
essential feature of quantum computing, such
as superposition or entanglement. By using this
special features, we can speed up significantly
the calculation, that is called quantum
parallelism.
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Final Note: A New Approach of the
HPC/HPDA Platforms for Unified
Advanced Computing Support (! Or ?)



Why an Advanced Computing Platform Vision (and Not Only HPC)?

(Inspired by the Accelerated/Hybrid Computing World)
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The Many-Architectures Challenge:
How to exploit better Advanced
Computing Architectures (for All)?

[

~ \FP% GPU TPU OPU
HIGH PERFORMANCE FIELD PROGRAMMABLE GRAPHICS TENSOR QUANTUM
COMPUTING GATE ARRAYS PROCESSING UNITS PROCESSING UNITS PROCESSING UNITS

From Why Quantum Computing is Integral to the Future of HPC’. By William "Whurley" Hurley, CEO of Strangeworks
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Conclusion: HPC/Advanced Computing Systems

| Control Iogic || Control Iogic || Control Iogic || Control Iogic |
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From : Bertels, K., Sarkar, A., Hubregtsen, T., Serrao, M., Mouedenne, A.A,, Yaday, A, Krol, A.M., Ashraf, |., & Almudever, C.G. (2020). Quantum Computer
Architecture Toward Full-Stack Quantum Accelerators. IEEE Transactions on Quantum Engineering, 1, 1-17.
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Questions?

CARLA

LATIN AMERICA HIGH PERFORMANCE
COMPUTING CONFERENCE

~

Super Computacion y Computo Avanzado y a Gran Escala <%
Clicuo Clantilico U Advanced and Large Scale Computing SCA {

o

CAGE Research group

2023

Cartagena de Indias, Colombia
September 18-22
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\sheorsed (‘ Super Computacién y
Calculo Cientifico UIS
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CONSTRUIMOS TUTURO

What is SC3UIS?

= =
& ® B

App|lcatI0n Scientific Software SCI- IT Management and Strategic Mediation Research and
Deployment Development Support and Training Innovation
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Where is SC3UIS?
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Calculo Cientifico UIS

B | @@ Supar Compuaciny SC3UIS at UIS (@UIS) and Guatiguara

| /Gvuatifzuaré Tech nOIOgy Park
(@PTGuatiguara)

* Founded in 1948 (Following the German /French Polytechnic Model)
e Public State University
e 8 Campus in the Department
e 4 at Metropolitan Zone of Bucaramanga
* 4 in Other Regional Cities (Barrancabermeja, Socorro, Malaga,
Barbosa)
e 25000 Students (2300 Postgraduate Students)
* 530 Faculty (4 at SC3UIS)
e Support and R+D+I and General Training of SC3UIS

< NVIDIA.

GPU

EDUCATION
CENTER

e Guatiguara Site was created in 1989 (New
Foundation at 2007 as Technology Park)
e 8 Industrial Corporations
3 National Labs
 National Core Repository and ANR Site
* 5 Centers
 High Performance Computing Data Center
* GUANE-1 and CHAMAN are here!
 R+D+l and Specialized Training Site of SC3UI&

“ . §

“ANVIDIA.

GPU

RESEARCH
CENTER




Guatiguara

Unbrersided «. O SsupercC iony
= B <5 e -

CONSTRUIMOS FTUTURO

(Some with ICP-Ecopetrol)

(Some with PYMES and
Consortium, as Cacao
Association)

(Some with Gouvernment and
Industrials Entities, i.e.
Colciencias)

R+D+i Axes
(@PTGuatiguara)

2017 Important Numbers

4 Patents

5 Spin Off in Incubation Process
(Potentially for 2018 more than 10)

3 Big International Collaborations (more
than 5M USD)

2018 New Axes:
Healthcare

New Generation of Automotive Motors
Human and Social Development
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