Grammar Inference: NFA learning with constraints

T. Jastrzab ${ }^{1} \quad$ F. Lardeux ${ }^{2} \quad$ E. Monfroy ${ }^{2}$

${ }^{1}$ Silesian Univ. of Technology, Gliwice, Poland.
${ }^{2}$ LERIA, Université d'Angers, France

Outline

1. Grammar inference
2. A basic SAT model
3. Improved models
4. Hybrid models
5. Experimental Results
6. Conclusion

Grammar inference

- Process of learning a grammar from observations
- Grammar: production rules or automaton
- Observations: sample of words
- positive words: words of the language
- negative words: not element of the language
- Applications: compiler design, bioinformatics, speech recognition, pattern recognition, machine learning, ...

Our problem

- Learning Non-determinist Finite Automaton (NFA) with k states
- Data: $S=S^{+} \cup S^{-}$:
- a sample S^{+}of positive words accepted by the NFA
- a sample S^{-}of negative words rejected by the NFA

A simple example

+ 010
$+0$
$+00$
$+\mathrm{k}=2 \Rightarrow$
- 01
- 1

Our tools

- Constraint-based solvers: interleaving of
- search space reduction (constraint propagation)
- decision (enumeration)
- Various possible domains:
- FD: finite domain integers with linear arithmetic and global constraints
- Zero-One variables: NLP / quadratic constraints, \sum, max
- SAT: Boolean variables and Boolean formula (in CNF)
- Goal: improving NFA learning with classic SAT solvers

Some notations: NFA

Let $A=(Q, \Sigma, q, F)$ be a NFA with:

- $Q=\left\{q_{1}, \ldots, q_{k}\right\}$ a set of states,
- Σ a finite alphabet (a set of n symbols),
- q the initial state,
- and F the set of final states.

Moreover, λ is the empty word, and $K=\{1, \ldots, k\}$

SAT model: Boolean variables

- k : size of the NFA to be learned
- $F=\left\{f_{1}, \ldots, f_{k}\right\}$: final states f_{i} is true iff State q_{i} is final
- $\Delta=\left\{\delta_{s, q_{i} q_{j}} \mid s \in \Sigma, i, j \in K\right\}: n . k^{2}$ transitions $\delta_{s, q_{q} q_{j}}$ is true iff there is a transition from State q_{i} to q_{j} with symbol s

Direct SAT model: Constraints

- empty word λ :

$$
\begin{equation*}
\left(\lambda \in S^{+} \longrightarrow f_{1}\right) \wedge\left(\lambda \in S^{-} \longrightarrow \neg f_{1}\right) \tag{1}
\end{equation*}
$$

- For $w \in S^{+}$: at least a path from q_{1} to a final q_{j}

$$
\begin{equation*}
\bigvee_{j \in K} \bigvee_{d \in D_{w, \overrightarrow{q_{1} q_{j}}}}\left(d \wedge f_{j}\right) \tag{2}
\end{equation*}
$$

$D_{w, \overrightarrow{q_{1} q_{j}}}$: set of paths for w from q_{1} to q_{j}

- For $w \in S^{-}$, and q_{j} : there is no path, or q_{j} is not final:

$$
\begin{equation*}
\neg\left[\bigvee_{j \in K} \bigvee_{d \in D_{w, \overline{q_{1} q_{j}}}}\left(d \wedge f_{j}\right)\right] \tag{3}
\end{equation*}
$$

Direct model: spatial complexity

- converted in CNF with Tseitin transformations
- number of variables:

$$
\mathcal{O}\left(\left|S^{+}\right| \cdot k^{\left|\omega^{\omega}+\right|}\right)
$$

- number of clauses

$$
\mathcal{O}\left(\left|S^{+}\right| \cdot\left(\left|\omega_{+}\right|+1\right) \cdot k^{|\omega+|}\right)
$$

- with ω_{+}the length of the longest word of S^{+}

Prefix model

- Idea:
- shared prefixes
- one Boolean variable per prefix
- Realization:
- $\operatorname{Pref}(W)=\cup_{w \in W} \operatorname{Pref}(w)$
- For each $w \in \operatorname{Pref}(S)$,
a Boolean variable $p_{w, \overrightarrow{q_{1} q_{i}}}$ to determine the existence of a path for w from state q_{1} to q_{i}.

Prefix model: $P_{k}=(1) \wedge(4) \wedge(5) \wedge(6) \wedge(7)$

- For each prefix $w=a \in \Sigma$, there is a path of size 1 for w :

$$
\begin{equation*}
\bigvee_{i \in K} \delta_{a, \overrightarrow{q_{1} q_{i}}} \leftrightarrow p_{a, \overrightarrow{q_{1} q_{i}}} \tag{4}
\end{equation*}
$$

- For each prefix $w=v a, w, v \in \operatorname{Pref}(S)$, and $a \in \Sigma$:

$$
\begin{equation*}
\bigwedge_{i \in K}\left(p_{w, \overrightarrow{q_{1} q_{i}}} \leftrightarrow\left(\bigvee_{j \in K} p_{v, \overrightarrow{q_{1} q_{j}}} \wedge \delta_{a, \overrightarrow{q_{j} q_{i}}}\right)\right) \tag{5}
\end{equation*}
$$

- For each word $w \in S^{+} \backslash\{\lambda\}$:

$$
\begin{equation*}
\bigvee_{i \in K} p_{w, \overrightarrow{q_{1} q_{i}}} \wedge f_{i} \tag{6}
\end{equation*}
$$

- For each word $w \in S^{-} \backslash\{\lambda\}$:

$$
\begin{equation*}
\bigwedge_{i \in K}\left(\neg p_{w, \overrightarrow{q_{1} q_{i}}} \vee \neg f_{i}\right) \tag{7}
\end{equation*}
$$

Suffix model

- Idea:
- shared suffixes
- one Boolean variable per suffix
- Realization:
- $\operatorname{Suf}(W)=\cup_{w \in W} S u f(w)$
- For each $w \in S u f(S)$,
a Boolean variable $p_{w, \overrightarrow{q_{i} q_{j}}}$ to determine the existence of a path for w from state q_{i} to q_{j}.

Suffix model: $S_{k}=(1) \wedge(8) \wedge(9) \wedge(6) \wedge(7)$

- For each suffix $w=a \in \Sigma$, there is a path of size 1 for w :

$$
\begin{equation*}
\bigvee_{(i, j) \in K^{2}} \delta_{a, \overrightarrow{q_{i} q_{j}}} \leftrightarrow p_{a, \overrightarrow{q_{i}} \vec{q}_{j}} \tag{8}
\end{equation*}
$$

- For each suffix $w=a v, v \in S u f(S)$ and $a \in \Sigma$:

$$
\begin{equation*}
\bigwedge_{(i, j) \in K^{2}}\left(p_{w, \overrightarrow{q_{i} q_{j}}} \leftrightarrow\left(\bigvee_{k \in K} \delta_{a, \overrightarrow{q_{i} q_{k}}} \wedge p_{v, \overrightarrow{q_{k} q_{j}}}\right)\right) \tag{9}
\end{equation*}
$$

Complexity

- Prefix model (in CNF):
- number of variables: $\mathcal{O}\left(\sigma \cdot k^{2}\right)$
- number of clauses $\mathcal{O}\left(\sigma \cdot k^{2}\right)$ with $\sigma=\Sigma_{w \in S}|w|$
- Suffix model (in CNF):
- number of variables: $\mathcal{O}\left(\sigma \cdot k^{3}\right)$
- number of clauses $\mathcal{O}\left(\sigma \cdot k^{3}\right)$

Hybrid models

- Idea:
- splitting each word into 2 words: $w_{i}=p_{i} . s_{i}$
- S_{p} set of p_{i}
- S_{s} set of s_{i}
- Challenge: where to split each word?

Hybrid models:
 $H_{k}=(1) \wedge(4) \wedge(5) \wedge(8) \wedge(9) \wedge(10) \wedge(11)$

Constraints:

- for each prefix of $\operatorname{Pref}\left(S_{p}\right)$: generate Constraints $(4,5)$
- for each suffix of $\operatorname{Suf}\left(S_{s}\right)$: generate Constraints $(8,9)$
- for each $w=p . s$, link p to s :
- if $w=p . s \in S^{-}$:

$$
\begin{equation*}
\bigwedge_{j, k) \in K^{2}}\left(\neg p_{p, \overrightarrow{q_{1} q_{j}}} \vee \neg p_{s, \overrightarrow{q_{j} q_{k}}} \vee \neg f_{k}\right) \tag{10}
\end{equation*}
$$

- if $w=p . s \in S^{+}$:

$$
\begin{equation*}
\bigvee_{(j, k) \in K^{2}} p_{p, \overrightarrow{q_{1} q_{j}}} \wedge p_{s, \overrightarrow{q_{j} q_{k}}} \wedge f_{k} \tag{11}
\end{equation*}
$$

Iterated Local Search Hybrid Models

- ILS: optimizes where to split each word
- Search space: all possible splits for each word
- Fitness: $f\left(S_{p}, S_{s}\right)=\left|\operatorname{Pre} f\left(S_{p}\right)\right|+k \cdot\left|S u f\left(S_{s}\right)\right|$
- Init: random split for each word
- at each iteration:
- select a w randomly (roulette wheel selection)
- find the best split for w (w.r.t. fitness)
- Note:
- no need for random walk, restart: diversification selecting w
- possible improvements changing Init

Genetic Algorithm Hybrid Models

- GA: optimizes where to split each word
- Search space: all possible splits for each word
- Fitness: $f\left(S_{p}, S_{s}\right)=\left|\operatorname{Pre} f\left(S_{p}\right)\right|+k \cdot\left|S u f\left(S_{s}\right)\right|$
- Population (constant size): an individual = a split for each word
- uniform crossover: children inherit randomly prefix and suffix of their parents
- mutation: new split for words of an individual (probability of mutation)
- stop: a number of populations or no improvement
- Init: random split for each word
- Possible improvements changing Init population

Hybrid models: best suffix model

Idea:

- bad complexity of S model \Rightarrow optimize construction of suffixes
- order on suffixes: \succcurlyeq based on length of suffix \times number of words with this suffix

$$
s_{1} \succcurlyeq s_{2} \Leftrightarrow\left|s_{1}\right| *\left|\Omega\left(s_{1}\right)\right| \geq\left|s_{2}\right| *\left|\Omega\left(s_{2}\right)\right|
$$

with $\Omega(s)$: words of S admitting s as a suffix

Hybrid models: best suffix model

Realization:

- \mathcal{S} the set of best suffixes
- cover: contains a suffix for each word of S
- maximize: contains the most important suffixes w.r.t. \succcurlyeq
- minimal: cover of S is lost by removing a suffix
- $\mathcal{S}=S_{s}$ of the S_{k}^{\star} hybrid model
- $S_{p}=$ set of prefixes completing the best suffix of each word

Hybrid models: best prefix model

- P_{k}^{\star} is built similarly as the best suffix model

Hybrid models: mixing hybrid models

Remark:

- S_{k}^{\star} and P_{k}^{\star} can be used as:
- Init for the $I L S$ model (named $I L S_{k}\left(S_{k}^{\star}, f\right)$)
- Initial population for the $G A$ model

Experimentation

- Python + PySAT
- cluster with Intel-E5-2695 CPUs, 10 GB of memory
- timeout: 10 min
- SAT solver: Glucose
- Benchmark: from Fl'21
- based on StaMinA competition
- alphabets of size 2,5 , and 10
- $\left|S^{+}\right|=\left|S^{-}\right|$and varies from 10 to 100 words
- S_{k}^{\star} and $I L S_{k}\left(S_{k}^{\star}, f\right)$ generate smaller instances Reason: optimization of suffixes
- $I L S_{k}($ rand,$f)$ solves slightly more instances
- S_{k}^{\star} model generates the fastest SAT instances to solve
- generation + solving time:

$$
\begin{aligned}
& 1 S_{k}^{\star} \\
& \mathbf{2} I L S_{k}\left(S_{k}^{\star}, f\right) \\
& \text { (penalized by slower generation) }
\end{aligned}
$$

- symmetry breaking:
few extra clauses, good solving gain

Property: from $k+1$ NFA to k NFA

- property: NFA of size $k \Longrightarrow$ NFA of size $k+1$
- with 1 final state (the new state)
- with no outgoing transition from the final state
- with redundancy of some transitions (the ones leading to previous final states)
- \Longrightarrow suffix model for $k+1$ in $\mathcal{O}\left(\sigma \cdot(k+1)^{2}\right)$ instead of $\mathcal{O}\left(\sigma \cdot(k)^{3}\right)$
- and same reduction for the hybrids

Using the property

- with a reduction algorithm
- add a final state to the model
- a reduction algorithm to transform the $k+1$ NFA into a k NFA
\Longrightarrow the algorithm may fails
- integrate all the "building" constraints into the model
- complete the model
- remove $k+1$ state and its incoming transitions
- make final state
\Longrightarrow always works
\Longrightarrow better results than with k states!!!

Conclusion

- New models \Rightarrow Improved NFA learning
- faster
- larger instances $(k,|\Sigma|,|S|)$
- Good results compared to previous works
- Future works:
- distributed computation / parallelization
- over-constrained models

