
Practical aspects of hybrid system
simulation and analysis

Georgios Kafanas

1

Outline

2

- Dynamic system simulation in HPC systems

- Safety analysis of controllers

- Overview of Modelica and OpenModelica

- Using OpenModelica in HPC systems

- Ariadne and other application specific packages

- Avenues of improvement

The University of Luxembourg HPC cluster

3

Example of applications deployed in UL HPC

Engineering

XDEM: Discrete Element Method solver

with extensions for multiphysics and

chemistry.

Physics

LibMBD: An implementation of the

many-body dispersion (MBD) method,

used in applications such crystal structure

prediction.

What about dynamical systems?

4

Biomass furnace simulation with XDEM

https://luxdem.uni.lu/
https://github.com/libmbd/libmbd

Example of applications deployed in UL HPC

Engineering

XDEM: Discrete Element Method solver

with extensions for multiphysics and

chemistry.

Physics

LibMBD: An implementation of the

many-body dispersion (MBD) method,

used in applications such crystal structure

prediction.

What about dynamical systems?

5

Electronic structure calculation
with LibMDB

a: J. Hermann et. al., arXiv:2308.03140 (2023)

https://luxdem.uni.lu/
https://github.com/libmbd/libmbd

When HPC can be useful?

Running multiple independent simulation in parallel

Parametric investigations are easily parallelizable. When more than few 1000 simulation runs are

required, the effort to parallelize the code is unusually worth the speedup.

Simulating very large systems

Laptop / desktop machines usually have 2 to 16 cores. If the system can be split in multiple independent

communicating components, you can utilize 1000s of cores in a typical HPC system.

6

The buck converter

7

- Objective to pin at zero:

- Sliding surface:

- Dynamics on the sliding mode:

Switched controller

- Continuous control signal

- For simplicity, assume that the initial value of the

controller is ‘reasonable’

- System dynamics:

- Sliding surface:

8

Converter dynamics

9

Time domain simulation

10

Modelica and OpenModelica

11

OpenModelica Compiler (omc)

- Generates C code

- Various flags for code generation including OpenMP and OpenCL

Modelica
Model
(.mo)

C files
Makefile

auxiliary files

moc gcc / clang
Executable

make

- High level domain specific language for the simulation of dynamical systems

- OpenModelica is a reference implementation that also offers good performance

A model for the buck converter in Modelica

12

- Modelica supports pure functions and equation models

- The switching manifold is a pure function, takes some inputs and produces an output

A model for the buck converter in Modelica

13

- Dynamic components are modeled with equations

- No causal relations are specified in equation models

A model for the buck converter in Modelica

14

- Equations link systems

- Large models are

constructed in a modular

fashion

- Currently no support for

discrete signals: u is a real

valued signal

Generating the model code

15

$ omc --hpcomCode=openmp --simulationCg Automaton.mo

--simulationCg Simulation code generation, creates C files, auxiliary files, and a Makefile

(Automaton.makefile)

--hpcomCode=openmp Enables the use of OpenMp

$ ls
Automaton_01exo.c Automaton_08bnd.c Automaton_13opt.c Automaton_18spd.c Automaton_JacA.bin
Automaton_02nls.c Automaton_09alg.c Automaton_13opt.h Automaton.c Automaton_literals.h
Automaton_03lsy.c Automaton_10asr.c Automaton_14lnz.c Automaton_functions.c Automaton.makefile
Automaton_04set.c Automaton_11mix.c Automaton_15syn.c Automaton_functions.h Automaton_model.h
Automaton_05evt.c Automaton_11mix.h Automaton_16dae.c Automaton_includes.h Automaton_records.c
Automaton_06inz.c Automaton_12jac.c Automaton_16dae.h Automaton_info.json
Automaton_07dly.c Automaton_12jac.h Automaton_17inl.c Automaton_init.xml

Compiling and running the model code

16

$ make -j -f Automaton.makefile

- Produces the executable: Automaton

- Newer versions of OpenModelica use clang as the default backend

$./Automaton -override \
 stopTime='0.02',stepSize='4e-7',i_L_0='0.0',v_C_0='0.0',outputFormat='csv' \
 -r='simulation_results.csv' \
 -parmodNumThreads='1'"

- The result is the file: simulation_results.csv

- Contains a time series with all the signals in the simulation

Safety analysis

17

Output of a single simulation

18

- Single simulation starting with the converter off

- Large initial excursion in the inductor current

- Repeat the simulation for a range of initial

conditions.

Objective: Find range of initial conditions where the

current transient does not exceed 20A.

Safety analysis of the sliding mode controller

19

- The maximum inductor current for each initial

condition

- Inductor:

○ initial current [0, 20A]

○ step 0.2A

- Capacitor:

○ initial voltage [0, 80V]

○ step 1V

- 8181 time domain simulations

C. J. Tomlin, et. al. 2000. "A game theoretic approach to controller
design for hybrid systems." Proceedings of the IEEE 88, no 7: 949-970

Performing an initial condition sweep

20

Performing an initial condition sweep

21

Implemented the parallelization in Python, spawning multiple processes with a thread pool.

Results

22

- The maximum inductor current for each initial

condition

- Inductor:

○ initial current [0, 20A]

○ step 0.2A

- Capacitor:

○ initial voltage [0, 80V]

○ step 1V

- 8181 time domain simulations

Results

23

- Initial conditions from which the maximum

inductor current is less than 20A

- Inductor:

○ initial current [0, 20A]

○ step 0.2A

- Capacitor:

○ initial voltage [0, 80V]

○ step 1V

- 8181 time domain simulations

Performance

24

8181 time domain simulations

- Speedup limited by file system

operations

- Avoid writing files using

OMPython

Running multiple simulations in parallel

25

Multiple tools to execute a simulation in parallel

GNU Parallel

- Simple to use

- Limited flexibility

Python

- Can parallelize code with threading or multiprocessing packages such as

concurrent.futures or multiprocessing

- Can use OpenModelica’s Python interface OMPython (based on ZeroMQ)

Analysis tools

26

Ariadne

27

Library implementing:

- Rigorous numerics

- Reachability analysis

Both problems are computationally

expensive

Collins, P. 2020. “Computable analysis with
applications to dynamic systems.” Mathematical
Structures in Computer Science 30, no. 2 (2020):
173-233

System analysis with Ariadne

28

- Reachability analysis can be used to verify

safety properties

But not quite stable yet:

- No API to extract results (output available

in .plt format only)

- Initial conditions can only be

multidimensional intervals

- Terminating based on convergence or time

limit

JuliaReach

- Independent package focusing on reachability analysis

- Hybrid systems are currently supported

- Highly fragmented implementation

- Non-uniform interface

Bogomolov S., et. al. 2019. “JuliaReach: a toolbox for set-based reachability.” Proceedings of the 22nd ACM International Conference on

Hybrid Systems: Computation and Control: 39-44

29

Computation frameworks

30

PowerDEVS

- Time domain simulation

- Based on a modeling framework which automates code generation for the simulator

- The design principle has been integrated into OpenModelica

31

Bergero, F., et. al. 2011. “PowerDEVS: a tool for hybrid system modeling and real-time simulation.” SIMULATION 87,
no. 1-2: 113-132

https://journals.sagepub.com/doi/10.1177/0037549710368029#con1

Functional Mock-up Interface

- Supported by OpenModelica and other simulation environments

- Describes 3 interface types:

32

Model exchange

Co-simulation Scheduled execution

The way forward?

33

Interfaces for reachability analysis?

Reachability analysis is both useful and computationally intensive, but tools that would allow its use in

HPC systems are missing.

- Theoretical foundations need to be more unified

- Takes time to develop the abstractions necessary for a good interface

- More communication

34

Any questions?

Thank you!

35

