
Guillaume HELBECQUE

PCOG Talks

April 18th, 2023

PhD supervisors:
Pr. Pascal BOUVRY, Université du Luxembourg

Pr. Nouredine MELAB, Université de Lille

Productivity-aware parallel cooperative combinatorial optimization
for ultra-scale supercomputers



2

Context

● Beginning of the exascale era1 (June 2022);

● Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.) and less and less reliable 
(Mean Time Between Failures – MTBF < 1h) systems1;

● Evolutionary school (MPI+X) vs. revolutionary school (Partitioned Global Address Space (PGAS) -
based environments).

1. Top500 ranking (edition of June 2022), https://www.top500.org/.

Fig. 1: The Frontier system at Oak 
Ridge National Laboratory.

Fig. 2: Frontier is the new No. 1 system in the Top5001.

https://www.top500.org/


3

Context

● Focus on exact Branch-and-Bound (B&B) optimization 
methods to solve combinatorial optimization problems:

➢ Large tree size → Efficient data structure;
➢ High irregularity → Efficient load balancing mechanism.

● Motivating example: Permutation Flowshop Scheduling 
Problems (PFSP). Search trees for very hard PFSP instances 
contain up to 1015 nodes.

Branch-and-Bound (B&B)

?
?

Fig. 3: Mapping B&B to hardware.
Fig. 4: Solution of a PFSP of size n=4.



4

State-of-the-art

● Most of existing parallel B&B algorithms are only guided by performance and benefit from problem-
specific optimizations:

➢ Multi-core CPUs: [Mezmaz2014], [Gmys2016];
➢ GPU and many-core: [Chakroun2013a], [Melab2018];
➢ Clusters of GPUs: [Vu2016];
➢ Grid computing: [Mezmaz2007], [Drozdowski2011].

● Few studies investigate the PGAS-oriented approach in the parallel optimization setting: 
[Machado2013], [Munera2013].

● Rise of the PGAS-based Chapel productivity-aware parallel programming language (HPE/Cray) 
[Callahan2004].

● Many issues have to be investigate:
➢ Dealing with scalability;
➢ Handling GPU-based heterogeneity;
➢ Address fault tolerance using checkpointing;
➢ Combine parallel B&B with metaheuristics.



5

PhD outline

Fig. 6: PhD outline.

● Extensive experiments using the Jean Zay (FR) and Meluxina (EuroHPC/LU) petascale 
supercomputers.

● Support from the Chapel’s team (HPE/Cray).



6

Scalable B&B - Parallel design and implementation

● Asynchronous parallel tree exploration model:
➢ Unpredictable communications;
➢ Unbalanced work units → need Work Stealing (WS).

● Depth-First tree-Search (DFS):
➢ Memory Efficiency;
➢ Stack (LIFO).

Fig. 7: Illustration of the parallel tree exploration model. 
(from [Chakroun2013b])



7

Scalable B&B - Parallel design and implementation

Collegial multi-pool approach [Gendron1994].

At the process level

L
0

L
0

L
1

L
N



8

Scalable B&B - The DistBag-DFS data structure

● DistBag2 (“distributed bag”): user-defined parallel-safe distributed multi-set implementation.

→ not suitable for DFS tree-search.

2. The DistBag data structure, https://chapel-lang.org/docs/modules/packages/DistributedBag.html.

Fig. 8: The DistBag data structure.

https://chapel-lang.org/docs/modules/packages/DistributedBag.html


9

Revisited into DistBag-DFS:
● Work pools → non-blocking split deque;

● New WS mechanism:
➢ Bi-level (locality-aware);
➢ Random victim selection;
➢ Steal half.

Scalable B&B - The DistBag-DFS data structure

Fig. 9: Simplified view of a non-blocking split deque.
(from [Vu2016])



10

Scalable B&B - Productivity-awareness

Sequential vs. Distributed parallel3:

Support for: 
➢ PFSP;
➢ 0/1-Knapsack;

➢ Unbalanced Tree-Search benchmark (UTS);
➢ N-Queens.

3. P3D-DFS, https://github.com/Guillaume-Helbecque/P3D-DFS.

https://github.com/Guillaume-Helbecque/P3D-DFS


11

Scalable B&B - Experimental results at the intra-node level

● P3D-DFS vs. OMP-PBB (OpenMP);

● Resolution of large PFSP instances;

● Aion cluster4: up to 128 processing cores;

● P3D-DFS outperforms its counterpart:
➢ ≠ data structures;
➢ ≠ synchronization mechanisms;

● On UTS, P3D-DFS is outperformed for 
finest-grained instances.

Fig. 10: Speed-up P3D-DFS vs. OMP-PBB in shared-memory 
experiments, Aion cluster.

4. ULHPC supercomputers - Aion system: https://hpc-docs.uni.lu/systems/aion/.

94%

https://hpc-docs.uni.lu/systems/aion/


12

Scalable B&B - Experimental results at the inter-node level

● P3D-DFS vs. MPI-PBB (MPI+pthread);

● Resolution of large PFSP instances;

● Aion cluster4: up to 64 computer nodes 
(8192 processing cores);

● P3D-DFS competitive against its 
counterpart:

➢ ≠ data structures;
➢ ≠ WS mechanisms;

● Similar results on UTS.

Fig. 11: Speed-up P3D-DFS vs. MPI-PBB in distributed-memory 
experiments, Aion cluster.

4. ULHPC supercomputers - Aion system: https://hpc-docs.uni.lu/systems/aion/.

96%

https://hpc-docs.uni.lu/systems/aion/


13

Scalable GPU-powered B&B – Design

                       Generation of nodes → CPU    /   Evaluation of nodes → GPU

Fig. 12: Illustration of the parallel evaluation of bounds model for GPU-accelerated B&B.
(from [Chakroun2013b])



14

Scalable GPU-powered B&B – Implementation

Two main approaches:

● Chapel’s native GPUs features:
➢ Since Chapel 1.26.0 (March 2022);
➢ Target Nvidia and AMD GPUs;
➢ Generate and launch GPU kernels;
➢ Under active development.

● GPUIterator and GPUAPI4 modules:
➢ User-defined package (Georgia Tech);
➢ Target Nvidia, AMD and Intel GPUs;
➢ Automate work distribution across 

CPUs and GPUs;
➢ Need to handle Cuda/OpenCL kernels 

explicitly.

4. Chapel-GPU: GPUIterator and GPUAPI module for Chapel, https://github.com/ahayashi/chapel-gpu.

https://github.com/ahayashi/chapel-gpu


15

Conclusion & future works 

● Extension of P3D-DFS to other combinatorial optimization problems (QAP, TSP, etc.)
● Validations through extensive experiments
● Discussion with the Chapel’s team to incorporate DistBag-DFS in the language

Fig. 13: PhD outline.



16

Some references

[Callahan2004] D. Callahan, et al. The cascade high productivity language. In 9th International Workshop on 
High-Level Parallel Programming Models and Supportive Environments, 52–60, 2004.

[Chakroun2013a] I. Chakroun, et al. Combining multi-core and GPU computing for solving combinatorial 
optimization problems. Journal of Parallel and Distributed Computing, 73(12):1563–1577, 2013.

[Chakroun2013b] I. Chakroun. Parallel heterogeneous Branch and Bound algorithms for multi-core and 
multi-GPU environments. PhD dissertation, Université de Lille, 2013.

[Drozdowski2011] M. Drozdowski, et al. Grid branch-and-bound for permutation flowshop. In Proceedings of 
the 9th International Conference on Parallel Processing and Applied Mathematics - Volume Part II, 21–30, 
Berlin, 2011.

[Gendron1994] B. Gendron, et al. Parallel branch-and-bound algorithms: Survey and synthesis. Operations 
Research, 42(6):1042–1066, 1994.

[Gmys2016] J. Gmys, et al. Work stealing with private integer–vector–matrix data structure for multi-core 
branch-and-bound algorithms. Concurrency and Computation: Practice and Experience, 28(18):4463–4484, 
2016.



17

Some references

[Machado2013] R. Machado, et al. Parallel local search: Experiments with a PGAS-based programming 
model. Abs/1301.7699, 2013.

[Melab2018] N. Melab, et al. Multi-core versus many-core computing for many-task branch-and-bound 
applied to big optimization problems. Future Generation Computer Systems, 82:472–481, 2018.

[Mezmaz2007] M. Mezmaz, et al. A grid-enabled branch and bound algorithm for solving challenging 
combinatorial optimization problems. In 2007 IEEE International Parallel and Distributed Processing 
Symposium, 1–9, 2007.

[Mezmaz2014] M. Mezmaz, et al. A multi-core parallel branch-and-bound algorithm using factorial number 
system. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium, 1203–1212, 2014.

[Munera2013] D. Munera, et al. Experimenting with X10 for parallel constraint-based local search. 
Abs/1307.4641, 2013.

[Vu2016] T. Vu, et al. Parallel branch-and-bound in multi-core multi-CPU multi-GPU heterogeneous 
environments. Future Generation Computer Systems, 56:95–109, 2016.



Thank you for your attention.

guillaume.helbecque@uni.lu
MNO E02 0225-060

https://github.com/Guillaume-Helbecque

mailto:guillaume.helbecque@uni.lu
https://github.com/Guillaume-Helbecque

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

