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Reinforcement Learning

Agent Environment
Action A, G
Next State Sy 1

Reward R;



Model-Free RL

Markov Decision Process (MDP) M = (S,4,p,R)

Environment

A ~ (- [Se)

Rt ~ R(St»At» St+1)
Stv1 ~ 0 |Se, Ap)

Learn a policy 7 that maximizes E [ Y., y*R; | 7, R, p]



Model-Free RL

* Markov Decision Process (MDP) M = (5,4,p,R)

Environment

P

A ~ (- [Se)

In model-free RL,
we do not know
p and R

Rt ~ R(St»At» St+1)
Stv1 ~ 0 |Se, Ap)

* Learn a policy 7 that maximizes E [ Y., y*R; | 7, R, p]




Value-Based Model-Free RL

* Action-Value function

q"(s,a) = X p(s'ls,a)[R(s,a,s") + yq"(s',m(s"))]



Value-Based Model-Free RL

 Action-Value function

q"(s,a) = Lap(s'ls,a) [R(s,a,s7) + yq" (s, m(s"))]
* Q-learning

Q(s,a) = Q(s,a) +«a (r + ymax Q(s’',a’) — 0O(s, a))

r and s’ are sampled from the environment real dynamics R and p
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Value-Based Model-Free RL

 Action-Value function

q"(s,a) = Lap(s'ls,a) [R(s,a,s7) + yq" (s, m(s"))]
* Q-learning

Q(s,a) = Q(s,a) +«a (r + ymax Q(s’',a’) — 0O(s, a))

r and s’ are sampled from the environment real dynamics R and p
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Multi-Objective Reinforcement Learning

Agent Environment
Action A, P
Next State S; 4
Reward vector
R, =|[R;..R,]

12



Multi-Objective Reinforcement Learning

Goal: Learn a set of policies I = {m4, ..., T,, } guaranteed to contain
an optimal policy for any preferences w over objectives

vt =v"-w

= viwy; + -+ VW,

e

Value w.r.t. m-th objective

Energy
efficiency

Velocity
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Multi-Objective Reinforcement Learning

Convex Coverage Set (CCS)

Optimal solution when the preferences are linear:

CCS={v™ € F|Iws.t. VW EF, v -w>vT - W }

@ @ Pareto Frontier

~ @ ccs

= Non-optimal : :

3 @ Non-optima Optimal policy w.r.t. any convex
a combination of rewards is in the
§ CCS!

“©

>

Value of Objective 1
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RL Success Cases
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al. . Nature 594,(2021).

... and many other applications
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Sample Efficiency in RL

* Thousands of environment interactions are required to learn
one policy
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Sample Efficiency in MORL

* Many thousands of environment interactions are required to learn
a set of policies! (one for each user preference)

/

Expected Return of Height Objecti
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Sample Efficiency in MORL

* Many thousands of environment interactions are required to learn
a set of policies! (one for each user preference)

Infeasible in real-world settings!
e.g. autonomous driving, healthcare, robotics

-
N
g

® GPI-LS + GPI-PD (ours) V
GPI-LS (ours)

©® PGMORL
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Sample Efficiency in MORL

* Many thousands of environment interactions are required to learn
a set of policies! (one for each user preference)

How to learn a set of policies containing optimal policies for
any user preference in a sample-efficient manner?

=
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Main Contributions

Two Generalized Policy Improvement (GPI)-based prioritization schemes

that improve sample-efficiency in MORL:

GPI| Linear Support (GPI-LS)

* Identify the most promising preferences/objectives to train on
*  Guaranteed identification of optimal (or e-optimal) sets of policies

GPI-Prioritized Dyna (GPI-PD)

* Identify relevant previous experiences when learning a new policy
*  First model-based MORL method for continuous states/actions

21




GPE & GPI

Generalized Policy Evaluation (GPE)
is the computation of the value function of a policy
on a set of tasks (reward functions)

Barreto, A. et al. Fast reinforcement learning with generalized policy updates. Proceedings of the National Academy of Sciences, 2020.
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GPE & GPI

Generalized Policy Evaluation (GPE)
is the computation of the value function of a policy
on a set of tasks (reward functions)
Good news:
In MORL under linear preferences, we can
perform GPE without having to test/deploy the policy

g (s,a) =q"*(s,a)-w forany w €W

Barreto, A. et al. Fast reinforcement learning with generalized policy updates. Proceedings of the National Academy of Sciences, 2020.
Alegre, L. N. et al. Optimistic linear support and successor features as a basis for optimal policy transfer. ICML, 2022.
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Generalized Policy Improvement (GPI)

Generalized Policy Improvement (GPI)
is the computation of a policy 7’ that improves
over a set of policies € Il given any new reward weights w

GPI(. . — T
' (s;w) =arg max max g, (s,a)

1 Successor Features for Transfer in Reinforcement Learning. Barreto et al. (NIPS 2017)
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Generalized Policy Improvement (GPI)

Generalized Policy Improvement (GPI)
is the computation of a policy 7’ that improves
over a set of policies € Il given any new reward weights w

" (s ;w) = argmax max qy; (s, a)

GP| Theorem': q%%!(s,a) > max q(s,a) foranyw € W

1 Successor Features for Transfer in Reinforcement Learning. Barreto et al. (NIPS 2017) 25



GPI Linear Support

* lteratively learns a policy set Il whose values approximte the CCS
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GPI Linear Support
* lteratively learns a policy set Il whose values approximte the CCS

Key idea: GPI Prioritization

* l|dentifying the most promising preferences to train on
— focus on corner weights

* Prioritize reward weights w.r.t. performance improvement given by GPI:

arg max (o571 — max ol )

ell
\VAS (Wcorner 4
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Maximum improvement is
guaranteed to be in one of the
corner weights (Thm. 3.2)

Iteratively:

* Selects the corner weight with
higher GPI priority

* Learns an improved policy for
the selected reward weights
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GPI Linear Support

Algorithm 1: GPI Linear Support (GPI-LS)

A LA AR ATRTY A

THEOREM 3.3. Let NewPolicy(w, II) in Alg. 1 be any algorithm
that returns an optimal policy, ry,, for a given weight vector w. Then,
Alg. 1is guaranteed to find a CCS in a finite number of iterations.

corner IS empty then

THEOREM 3.5. Let NewPolicy(w,II) in Alg. 1 be an algorithm
that produces an e-optimal policy, m,,, when its termination condition
is met (when it returns done = True); that is, vy, — Uf;“’ < €. Then,

Alg. 1 is guaranteed to return an e-CCS.

12 ‘ IT, V «— RemoveDominated(II, V)
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Value-Based Model-Free RL

 Action-Value function

q"(s,a) = Lap(s'ls,a) [R(s,a,s7) + yq" (s, m(s"))]
* Q-learning

Q(s,a) = Q(s,a) +«a (r + ymax Q(s’',a’) — 0O(s, a))

r and s’ are sampled from the environment real dynamics R and p

What if we have access/learn R and p ?
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Model-Based RL

* Learns a model p of the environment

(s',7) ~p(|s,a)
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Model-Based RL

Learns a model p of the environment

(s',7) ~p( s, a)

A ~ (- [Se)

Rt ~ R(St»At»Stﬂ)
Sev1 ~ P |Se, Ag)
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Model-Based RL

Learns a model p of the environment

(s',7) ~p(|s,a)
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Model-Based MORL

* Increase sample-efficiency in RL using a learned model of the environment
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Model-Based MORL

* Increase sample-efficiency in RL using a learned model of the environment

* Few model-based methods have been explored in MORL

* We learn a model that predicts the next state and reward vector:

P (St+1, RSt Ay)

This model can be used to learn policies
for any given preferences!
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GPI Prioritized Dyna (GPI-PD)

Policies learned via a Dyna-style approach

for H Dyna steps do > GPI-Prioritized Dyna
Sample S ~ B according to Py,  (Eq. (10))
A — 7S W) (SLR) ~ pyp (+]S, A)
Add (S, A, R, ) to Biodel

Py (s.a) o gy (s.a) — g% (s, a)

Prioritizes experiences for which GPI results
in larger performance improvements



GPI-PD with Function Approximation

e Conditioned Action-Value Functions

Qp(s,a,w) =~ q"v (s, a)

7O (s; w) € argmax max Qy(s,a,w') - w
aeﬂ W’EM

 Continuous Actions
* MOTD3 — Multi-objective TD3

VI(§;w) =VaQq(s,a. W) - Wla=r (s.w) Vp 7 (5, W)
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Experiments

* Three environments: Deep Sea Treasure, Minecart, and MO-Hopper
* Discrete and continuous state and action spaces

IESIE

1201148 151 184

* Evalution metrics: Expected Utility (EU) and Maximum Utility Loss (MUL)
EU(II) = Ey gy |[max, e od ]
MUL(II) = maxy,cqy (05, — max, ey o)

Environments available on MO-Gymnasium: https://github.com/Farama-Foundation/MO-Gymnasium
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https://github.com/Farama-Foundation/MO-Gymnasium

MineCart
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* GPI-LS and GPI-LS+GPI-PD consistently identify near optimal solutions
*  Our methods’ performance metrics strictly dominate that of competitors



Expected Utility
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MO Hopper

—o— GPI-LS + GPI-PD (ours)

= GPI-LS (ours)

——= PGMORL after 6x1.5=9M time steps
— PGMORL

1 2 3 4 5 6 7 8 9 10
Time Step (1.5-10%)

Our methods achieve higher
expected utility and converged
to better solutions

Require ten times fewer
environment interactions
compared to SOTA method
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MO Hopper — Pareto Front
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Conclusion

* We introduced two principled GPIl-based prioritization methods

* Monotonically improve the quality of the set of policies
* Guaranteed to identify (near) optimal set of policies

GPI-PD is the first model-based MORL algorithm for continuous states

Outperforms state-of-the-art MORL algorithms in challenging tasks
* Significantly improves sample-efficiency
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O https://github.com/Farama-Foundation/MO-Gymnasium

MO-Gymnasium: Multi-Objective Reinforcement
Learning Environments

MO-Gymnasium is an open source Python library for developing and comparing multi-objective reinforcement
learning algorithms by providing a standard APl to communicate between learning algorithms and environments, as
well as a standard set of envircnments compliant with that API. Essentially, the environments follow the standard

Gymnasium API, but return vectorized rewards as numpy arrays.

The documentation website is at mo-gymnasium.farama.org, and we have a public discord server (which we also use
to coordinate development work) that you can join here: https://discord.gg/bnlekubTgé.

Alegre et al. 2022. MO-Gym: A Library of Multi-Objective Reinforcement Learning Environments. In Proceedings
of the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn 2022. 44


https://github.com/Farama-Foundation/MO-Gymnasium

0 https://github.com/Farama-Foundation/MO-Gymnasium

M O - Gy mn Environments t

- Obs/Action o .
Le a r n I n g E Env S Objectives Description
spaces
deep-sea-
treasure-ve . )
MD-G‘:,-‘TT‘H‘IESiLJm iS all o B . discrete / [treasure, trea i ing int T E'l.ﬂf'DrCE'rT"lE'r'lt
. discrete time penalty] as -

learning algorithms by d environments, as

well as a standard set ¢ w the standard

resource-

Gymnasium API, but re

gathering-ve

The documentation wa ., [enemy, gold, gem] @ 10% chance of killng the agent. Fro (which we also use

to coordinate develop

Full binary tree of depth d=5,6 or 7. Every leaf
contains a fruit with a value for the nutrients

Alegre et al. 2022. MO-(0SN. < Cos, —_— R T N S Y S O e Bceedings

of the 34th Benelux Conference on Artifi c:al Intelllgence BNAIC/BeneIearn 2022 45


https://github.com/Farama-Foundation/MO-Gymnasium

O https://github.com/LucasAlegre/morl-baselines

repo status | Active Python tests | passing discord | 5 online | € pre-commit enabled | code style black

MORL-Baselines

MORL-Baselines is a library of Multi-Objective
Reinforcement Learning (MORL) algorithms. This
repository aims at containing reliable MORL algorithms

implementations in PyTorch.

It strictly follows MO-Gymnasium API, which differs from * o

the standard Gymnasium APl only in that the environment  gpergy ¢ .
returns a numpy array as the reward. efficiency .
For details on multi-objective MDP's (MOMDP's) and other *
MORL definitions, we suggest reading A practical guide to Velocity *
multi-objective reinforcement learning and planning. velocity
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Additional Slides
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Stochastic Mixture Model of Dynamics

Dynamics approximated via a bootstrap ensemble of probabilistic neural networks '

parameterized as multivariate Gaussian distribution

, 29 (St, At))

St+1, Rt St, Ay
(St, A)
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el Nty
«».nww.,«w\ WA

N

W, 7/
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“Deep Reinforcement Learning in a Handful of Trials Using Probabilistic Dynamics Models”. (NIPS 2018)

1K.Chua, R.Calandra, R.McAllister, and S. Levine,



GPI Linear Support

Algorithm 1: GPI Linear Support (GPI-LS)

Input: MOMDP M
1 Ty, V™ «— NewPolicy(w = [1,0,...,0] ")

2 I — {my},V — {vVWI M« {}

3 while True do

11

12

Weorner < CornerWeights(V) \ M
if Weorner is empty then
‘ return II, V; > Found CCS (or e-CCS)

GPI
W argmaxy.cqy (oy

TTw, V™%, done « NewPolicy(w, II)
if done then
‘ Add wto M; » Adds w to support of partial CCS
Add my to IT and v™ to V
I1, V <« RemoveDominated(II, V)

JT
— Max e[y V%)
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Algorithm 2: GPI-Prioritized Dyna (GPI-PD)

1 Initialize action-value function Qg (s, a, w), dynamics model p,,,

9

10

11

12

buffers B and B, 4.1 weight support set M

M « extrema weights of “W; wo ~ M
for t =0...co do

Every N time steps do > GPI Linear Support (Alg. 1)
YV « evaluate v7™ for allw € M

M,V « RemoveDominated( M, V)

“Weorner «— CornerWeights(V)

Add to M the top-k weight vectors in “W,per W.IL.
Arg MaXy e Wormer (o3 — maxzen o)

if S; is terminal then

w; ~ M

St~ u

A, — 7P4(S,;w,) (Eq. (11)) > Follow GPI policy

13

11

15

16

17

18

19

20

21

22

23

Execute A;, observe S;41, and R,
Add (54, A;, Ry, 5441) to B with priority Py, (S;, Ay )
Update model p,, with experience tuples from 3
for H Dyna steps do » GPI-Prioritized Dyna
Sample S ~ B according to Py, (Eq. (10))
A — 7S w,); (S'.R) ~ py(+[S, A)
Add (S, AR, S") to Bygel
> Update multi-objective Q-function
for G gradient updates do
Build mini-batch {(S;, A;,R;, S}) }f’:l with b tuples from
Binodel and (1 — f)b tuples from B
Update Qg by minimizing £(68;w,) + L(6;w’) w.rt. 0 via
mini-batch gradient descent, where w’ ~ M
Update priorities Py, of all pairs (5;, A;) in the mini-batch
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