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Reinforcement Learning
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Model-Free RL

• Markov Decision Process (MDP)     𝑀 = (𝑆, 𝐴, 𝑝, 𝑅)

• Learn a policy 𝜋 that maximizes 𝔼  σ𝑡 𝛾𝑡𝑅𝑡 𝜋, 𝑅, 𝑝]
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Agent

𝑅𝑡 ∼ 𝑅(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1)
𝑆𝑡+1 ∼ 𝑝(⋅ |𝑆𝑡, 𝐴𝑡) 

𝐴𝑡 ∼ π(⋅ |𝑆𝑡)
Environment
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Agent

𝑅𝑡 ∼ 𝑅(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1)
𝑆𝑡+1 ∼ 𝑝(⋅ |𝑆𝑡, 𝐴𝑡) 

𝐴𝑡 ∼ π(⋅ |𝑆𝑡)
Environment

In model-free RL, 
we do not know

 𝑝 and 𝑅



Value-Based Model-Free RL

• Action-Value function

  𝑞𝜋 𝑠, 𝑎 = σ𝑠′ 𝑝(𝑠′|𝑠, 𝑎) [𝑅 𝑠, 𝑎, 𝑠′ +  𝛾𝑞𝜋 𝑠′, 𝜋(𝑠′) ]
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Value-Based Model-Free RL

• Action-Value function

  𝑞𝜋 𝑠, 𝑎 = σ𝑠′ 𝑝(𝑠′|𝑠, 𝑎) [𝑅 𝑠, 𝑎, 𝑠′ +  𝛾𝑞𝜋 𝑠′, 𝜋(𝑠′) ]

• Q-learning

𝑄 𝑠, 𝑎  ≔  𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max 
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

𝑟 and 𝑠′ are sampled from the environment real dynamics 𝑅 and 𝑝
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Multi-Objective Reinforcement Learning
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Agent

Next State 𝑆𝑡+1

Reward vector
 𝑹𝑡 = 𝑅1 … 𝑅m

 

Action 𝐴𝑡

Environment



Multi-Objective Reinforcement Learning
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Goal: Learn a set of policies Π = {𝜋1, … , 𝜋𝑛 } guaranteed to contain 

an optimal policy for any preferences 𝒘 over objectives

𝑣𝑤
𝜋 = 𝒗𝜋 ⋅ 𝒘

= 𝑣1
𝜋𝑤1 + ⋯ + 𝑣𝑚

𝜋 𝑤𝑚

Value w.r.t. 𝑚-th objective 



Convex Coverage Set (CCS)

  Optimal solution when the preferences are linear:
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Pareto Frontier

CCS

Non-optimal

Multi-Objective Reinforcement Learning

Optimal policy w.r.t. any convex 

combination of rewards is in the 

CCS!
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RL Success Cases
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Autonomous navigation of stratospheric 
balloons using reinforcement learning. 
Bellemare, M.G., Candido, S., Castro, P.S. et 
al.. Nature 588, (2020)

A graph placement 
methodology for fast chip 
design. Mirhoseini, A., Goldie, 
A., Yazgan, M. et 
al. . Nature 594,(2021).

Mastering the game of Go with deep 
neural networks and tree search. Silver, D., 
Huang, A., Maddison, C. et al.. Nature 529, 
(2016).

… and many other applications



Sample Efficiency in RL
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• Thousands of environment interactions are required to learn 

one policy



Sample Efficiency in MORL
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• Many thousands of environment interactions are required to learn

a set of policies! (one for each user preference)



Sample Efficiency in MORL
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• Many thousands of environment interactions are required to learn

a set of policies! (one for each user preference)

Infeasible in real-world settings!

e.g. autonomous driving, healthcare, robotics



Sample Efficiency in MORL
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• Many thousands of environment interactions are required to learn

a set of policies! (one for each user preference)

How to learn a set of policies containing optimal policies for

any user preference in a sample-efficient manner?



Two Generalized Policy Improvement (GPI)-based prioritization schemes 

that improve sample-efficiency in MORL:

Main Contributions
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GPI Linear Support (GPI-LS)

• Identify the most promising preferences/objectives to train on

• Guaranteed identification of optimal (or 𝜖-optimal) sets of policies

GPI-Prioritized Dyna (GPI-PD)

• Identify relevant previous experiences when learning a new policy

• First model-based MORL method for continuous states/actions



Generalized Policy Evaluation (GPE) 

is the computation of the value function of a policy 𝜋

on a set of tasks (reward functions) 

GPE & GPI

22Barreto, A. et al. Fast reinforcement learning with generalized policy updates. Proceedings of the National Academy of Sciences, 2020.



Generalized Policy Evaluation (GPE) 

is the computation of the value function of a policy 𝜋

on a set of tasks (reward functions) 

Good news:

In MORL under linear preferences, we can 

perform GPE without having to test/deploy the policy

𝑞𝑤
𝜋 s, a = 𝐪𝜋(s, a) ⋅ 𝑤    for any  𝑤 ∈ 𝒲

GPE & GPI

23Barreto, A. et al. Fast reinforcement learning with generalized policy updates. Proceedings of the National Academy of Sciences, 2020.
Alegre, L. N. et al. Optimistic linear support and successor features as a basis for optimal policy transfer. ICML, 2022.



Generalized Policy Improvement (GPI) 

is the computation of a policy 𝜋’ that improves 

over a set of policies 𝜋 ∈ Π given any new reward weights 𝒘

𝜋𝐺𝑃𝐼 𝑠 ; 𝑤 = arg max
𝑎∈𝒜

 max
𝜋∈Π

 𝑞𝑤
𝜋 𝑠, 𝑎  

Generalized Policy Improvement (GPI)

241 Successor Features for Transfer in Reinforcement Learning. Barreto et al. (NIPS 2017)
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is the computation of a policy 𝜋’ that improves 

over a set of policies 𝜋 ∈ Π given any new reward weights 𝒘

𝜋𝐺𝑃𝐼 𝑠 ; 𝑤 = arg max
𝑎∈𝒜

 max
𝜋∈Π

 𝑞𝑤
𝜋 𝑠, 𝑎  

Generalized Policy Improvement (GPI)

251 Successor Features for Transfer in Reinforcement Learning. Barreto et al. (NIPS 2017)

GPI Theorem1:   𝑞𝑤
𝐺𝑃𝐼 𝑠, 𝑎 ≥ max

𝜋∈Π
 𝑞𝑤

𝜋 𝑠, 𝑎     for any 𝑤 ∈ 𝒲



GPI Linear Support
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• Iteratively learns a policy set Π whose values approximte the CCS



GPI Linear Support
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• Iteratively learns a policy set Π whose values approximte the CCS

Key idea: GPI Prioritization

• Identifying the most promising preferences to train on 

↦ focus on corner weights

• Prioritize reward weights w.r.t. performance improvement given by GPI:



GPI Linear Support
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𝑣
𝜋1

𝑣
𝜋2

𝑣
𝜋3

max
𝜋∈Π

𝑣
𝜋

• Maximum improvement is 

guaranteed to be in one of the 

corner weights (Thm. 3.2)

• Iteratively:

• Selects the corner weight with 

higher GPI priority

• Learns an improved policy for 

the selected reward weights



GPI Linear Support
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Value-Based Model-Free RL

• Action-Value function

  𝑞𝜋 𝑠, 𝑎 = σ𝑠′ 𝑝(𝑠′|𝑠, 𝑎) [𝑅 𝑠, 𝑎, 𝑠′ +  𝛾𝑞𝜋 𝑠′, 𝜋(𝑠′) ]

• Q-learning

𝑄 𝑠, 𝑎  ≔  𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max 
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

𝑟 and 𝑠′ are sampled from the environment real dynamics 𝑅 and 𝑝
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What if we have access/learn 𝑅 and 𝑝 ?



Model-Based RL

• Learns a model 𝑝 of the environment 

𝑠′, 𝑟 ∼ 𝑝(⋅ |𝑠, 𝑎) 
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Agent
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Environment



Model-Based RL

• Learns a model 𝑝 of the environment 

𝑠′, 𝑟 ∼ 𝑝(⋅ |𝑠, 𝑎) 

33

𝑆𝑡+1, 𝑅𝑡  ∼ 𝑝(⋅ |𝑆𝑡, 𝐴𝑡) 

𝐴𝑡 ∼ π(⋅ |𝑆𝑡)

Environment

Model

Agent



Model-Based MORL

• Increase sample-efficiency in RL using a learned model of the environment
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Model-Based MORL

• Increase sample-efficiency in RL using a learned model of the environment

• Few model-based methods have been explored in MORL

• We learn a model that predicts the next state and reward vector:

This model can be used to learn policies 

for any given preferences!
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GPI Prioritized Dyna (GPI-PD)

Policies learned via a Dyna-style approach

Prioritizes experiences for which GPI results

in larger performance improvements



GPI-PD with Function Approximation

• Conditioned Action-Value Functions

• Continuous Actions 

• MOTD3 – Multi-objective TD3
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Experiments

• Three environments: Deep Sea Treasure, Minecart, and MO-Hopper

• Discrete and continuous state and action spaces

• Evalution metrics: Expected Utility (EU) and Maximum Utility Loss (MUL)

38Environments available on MO-Gymnasium: https://github.com/Farama-Foundation/MO-Gymnasium

https://github.com/Farama-Foundation/MO-Gymnasium
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MineCart

• GPI-LS and GPI-LS+GPI-PD consistently identify near optimal solutions

• Our methods’ performance metrics strictly dominate that of competitors
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MO Hopper

• Our methods achieve higher 

expected utility and converged 

to better solutions

• Require ten times fewer 

environment interactions 

compared to SOTA method
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MO Hopper – Pareto Front



Conclusion
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• We introduced two principled GPI-based prioritization methods

• Monotonically improve the quality of the set of policies

• Guaranteed to identify (near) optimal set of policies

• GPI-PD is the first model-based MORL algorithm for continuous states

• Outperforms state-of-the-art MORL algorithms in challenging tasks

• Significantly improves sample-efficiency
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Alegre et al. 2022. MO-Gym: A Library of Multi-Objective Reinforcement Learning Environments. In Proceedings 

of the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn 2022.

https://github.com/Farama-Foundation/MO-Gymnasium

https://github.com/Farama-Foundation/MO-Gymnasium
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Alegre et al. 2022. MO-Gym: A Library of Multi-Objective Reinforcement Learning Environments. In Proceedings 

of the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn 2022.

https://github.com/Farama-Foundation/MO-Gymnasium

https://github.com/Farama-Foundation/MO-Gymnasium


https://github.com/LucasAlegre/morl-baselines
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https://github.com/LucasAlegre/morl-baselines


Towards Sample-Efficient Multi-Objective 
Reinforcement Learning

Lucas N. Alegre

Thank You!

lnalegre@inf.ufrgs.br @lnalegre github.com/LucasAlegre/morl-baselines
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Additional Slides



Stochastic Mixture Model of Dynamics

Dynamics approximated via a bootstrap ensemble of probabilistic neural networks 1

parameterized as multivariate Gaussian distribution

1K.Chua, R.Calandra, R.McAllister, and S. Levine,  “Deep Reinforcement Learning in a Handful of Trials Using Probabilistic Dynamics Models”. (NIPS 2018) 



GPI Linear Support
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