Towards Sample-Efficient Multi-Objective Reinforcement Learning

Lucas N. Alegre

INF - Universidade Federal do Rio Grande do Sul Al-Lab - Vrije Universiteit Brussel

About Me

• Bs.C. Computer Science cum laude at INF-UFRGS (2016 - 2020)

About Me

- Bs.C. Computer Science cum laude at INF-UFRGS (2016 2020)
- Ph.D. on Multi-Objective Reinforcement Learning (2021 ongoing)
 - Advisor: Prof. Ana Bazzan (INF-UFRGS)
 - Co-Advisor: Prof. Bruno da Silva (UMASS)

About Me

- Bs.C. Computer Science cum laude at INF-UFRGS (2016 2020)
- Ph.D. on Multi-Objective Reinforcement Learning (2021 ongoing)
 - Advisor: Prof. Ana Bazzan (INF-UFRGS)
 - Co-Advisor: Prof. Bruno da Silva (UMASS)

- Ph.D. sandwich period at AI-Lab VUB (Aug 2022 Jul 2023)
 - Advisor: Prof. Ann Nowé

Reinforcement Learning

Model-Free RL

• Markov Decision Process (MDP) M = (S, A, p, R)

• Learn a policy π that maximizes $\mathbb{E}\left[\sum_{t} \gamma^{t} R_{t} \mid \pi, R, p\right]$

Model-Free RL

• Markov Decision Process (MDP) M = (S, A, p, R)

• Learn a policy π that maximizes $\mathbb{E}\left[\sum_{t} \gamma^{t} R_{t} \mid \pi, R, p\right]$

Action-Value function

$$q^{\pi}(s,a) = \sum_{s'} p(s'|s,a) \left[\frac{R}{s,a,s'} + \gamma q^{\pi}(s',\pi(s')) \right]$$

• Action-Value function

$$q^{\pi}(s,a) = \sum_{s'} p(s'|s,a) \left[\frac{R}{s,a,s'} + \gamma q^{\pi}(s',\pi(s')) \right]$$

• Q-learning

$$Q(s,a) \coloneqq Q(s,a) + \alpha \left(\frac{r}{a} + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

r and s' are sampled from the environment real dynamics R and p

• Action-Value function

$$q^{\pi}(s,a) = \sum_{s'} p(s'|s,a) \left[\frac{R}{s,a,s'} + \gamma q^{\pi}(s',\pi(s')) \right]$$

• Q-learning

$$Q(s,a) \coloneqq Q(s,a) + \alpha \left(\frac{r}{a} + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

r and s' are sampled from the environment real dynamics R and p

Multi-Objective Reinforcement Learning

Multi-Objective Reinforcement Learning

Goal: Learn a set of policies $\Pi = \{\pi_1, ..., \pi_n\}$ guaranteed to contain an optimal policy for **any** preferences w over objectives

$$v_{\boldsymbol{w}}^{\pi} = \boldsymbol{v}^{\pi} \cdot \boldsymbol{w}$$

$$= v_1^{\pi} w_1 + \dots + v_m^{\pi} w_m$$

Value w.r.t. m-th objective

Multi-Objective Reinforcement Learning

Convex Coverage Set (CCS)

Optimal solution when the preferences are linear:

$$CCS \equiv \{ \mathbf{v}^{\pi} \in \mathcal{F} \mid \exists \mathbf{w} \text{ s.t. } \forall \mathbf{v}^{\pi'} \in \mathcal{F}, \mathbf{v}^{\pi} \cdot \mathbf{w} \ge \mathbf{v}^{\pi'} \cdot \mathbf{w} \}$$

Optimal policy w.r.t. *any* convex combination of rewards is in the <u>CCS</u>!

Sample-Efficient Multi-Objective Learning via Generalized Policy Improvement Prioritization

<u>Lucas N. Alegre^{1,2}</u> Ana L. C. Bazzan¹ Diederik M. Roijers ² Ann Nowé ² Bruno C. da Silva³

¹ Universidade Federal do Rio Grande do Sul ² Vrije Universiteit Brussel ³ University of Massachusetts Inalegre@inf.ufrgs.br

RL Success Cases

Mastering the game of Go with deep neural networks and tree search. Silver, D., Huang, A., Maddison, C. *et al.*. *Nature* **529**, (2016).

Autonomous navigation of stratospheric balloons using reinforcement learning. Bellemare, M.G., Candido, S., Castro, P.S. *et al.*. *Nature* **588**, (2020)

A graph placement methodology for fast chip design. Mirhoseini, A., Goldie, A., Yazgan, M. *et al.* . *Nature* **594**,(2021).

... and many other applications

Sample Efficiency in RL

 Thousands of environment interactions are required to learn one policy

Sample Efficiency in MORL

 Many thousands of environment interactions are required to learn a set of policies! (one for each user preference)

Sample Efficiency in MORL

 Many thousands of environment interactions are required to learn a set of policies! (one for each user preference)

Sample Efficiency in MORL

 Many thousands of environment interactions are required to learn a set of policies! (one for each user preference)

How to learn a set of policies containing optimal policies for any user preference in a sample-efficient manner?

Main Contributions

Two Generalized Policy Improvement (GPI)-based prioritization schemes that improve sample-efficiency in MORL:

GPI Linear Support (GPI-LS)

- Identify the most promising preferences/objectives to train on
- Guaranteed identification of optimal (or ϵ -optimal) sets of policies

GPI-Prioritized Dyna (GPI-PD)

- Identify relevant previous experiences when learning a new policy
- First model-based MORL method for continuous states/actions

GPE & GPI

Generalized Policy Evaluation (GPE)

is the computation of the value function of a policy π on a **set** of tasks (reward functions)

GPE & GPI

Generalized Policy Evaluation (GPE)

is the computation of the value function of a policy π on a **set** of tasks (reward functions)

Good news:

In MORL under linear preferences, we can perform GPE without having to test/deploy the policy

$$q_{\boldsymbol{w}}^{\pi}(s,a) = \mathbf{q}^{\pi}(s,a) \cdot \boldsymbol{w}$$
 for any $\boldsymbol{w} \in \mathcal{W}$

Barreto, A. et al. *Fast reinforcement learning with generalized policy updates*. Proceedings of the National Academy of Sciences, 2020. Alegre, L. N. et al. *Optimistic linear support and successor features as a basis for optimal policy transfer*. ICML, 2022.

Generalized Policy Improvement (GPI)

Generalized Policy Improvement (GPI)

is the computation of a policy π ' that improves over a set of policies $\pi \in \Pi$ given any new reward weights w

$$\pi^{GPI}(s;w) = \arg\max_{a\in\mathcal{A}} \max_{\pi\in\Pi} q_w^{\pi}(s,a)$$

¹ Successor Features for Transfer in Reinforcement Learning. Barreto et al. (NIPS 2017)

Generalized Policy Improvement (GPI)

Generalized Policy Improvement (GPI)

is the computation of a policy π ' that improves over a set of policies $\pi \in \Pi$ given any new reward weights w

$$\pi^{GPI}(s; w) = \arg\max_{a \in \mathcal{A}} \max_{\pi \in \Pi} q_w^{\pi}(s, a)$$

GPI Theorem¹: $q_w^{GPI}(s, a) \ge \max_{\pi \in \Pi} q_w^{\pi}(s, a)$ for any $w \in \mathcal{W}$

¹ Successor Features for Transfer in Reinforcement Learning. Barreto et al. (NIPS 2017)

• Iteratively learns a policy set Π whose values approximte the CCS

• Iteratively learns a policy set Π whose values approximte the CCS

Key idea: GPI Prioritization

- Identifying the most promising preferences to train on

 → focus on corner weights
- Prioritize reward weights w.r.t. performance improvement given by GPI:

$$\underset{\mathbf{w} \in \mathcal{W}_{\text{corner}}}{\operatorname{arg\,max}} \left(v_{\mathbf{w}}^{\text{GPI}} - \underset{\pi \in \Pi}{\max} v_{\mathbf{w}}^{\pi} \right)$$

Maximum improvement is guaranteed to be in one of the corner weights (Thm. 3.2)

lteratively:

- Selects the corner weight with higher GPI priority
- Learns an improved policy for the selected reward weights

Algorithm 1: GPI Linear Support (GPI-LS)

Тнеовем 3.3. Let NewPolicy(\mathbf{w} , Π) in Alg. 1 be any algorithm that returns an optimal policy, $\pi^*_{\mathbf{w}}$, for a given weight vector \mathbf{w} . Then, Alg. 1 is guaranteed to find a CCS in a finite number of iterations.

if W_{corner} is empty then

5

THEOREM 3.5. Let NewPolicy(\mathbf{w}, Π) in Alg. 1 be an algorithm that produces an ϵ -optimal policy, π_w , when its termination condition is met (when it returns done = True); that is, $v_{\mathbf{w}}^* - v_{\mathbf{w}}^{\pi_w} \leq \epsilon$. Then, Alg. 1 is guaranteed to return an ϵ -CCS.

12 $\Pi, \mathcal{V} \leftarrow \text{RemoveDominated}(\Pi, \mathcal{V})$

Action-Value function

$$q^{\pi}(s,a) = \sum_{s'} p(s'|s,a) \left[\frac{R}{s,a,s'} + \gamma q^{\pi}(s',\pi(s')) \right]$$

• Q-learning

$$Q(s,a) \coloneqq Q(s,a) + \alpha \left(\frac{r}{a} + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

r and s' are sampled from the environment real dynamics R and p

What if we have access/learn R and p?

Model-Based RL

• Learns a model *p* of the environment

 $(s',r) \sim p(\cdot | s,a)$

Model-Based RL

• Learns a model p of the environment

 $(s',r) \sim p(\cdot | s,a)$

Model-Based RL

• Learns a model p of the environment

$$(s',r) \sim p(\cdot | s,a)$$

Environment

Model-Based MORL

• Increase sample-efficiency in RL using a learned model of the environment

Model-Based MORL

• Increase sample-efficiency in RL using a learned model of the environment

- Few model-based methods have been explored in MORL
- We learn a model that predicts the next state and reward vector:

$$p_{\varphi}(S_{t+1}, \mathbf{R}_t | S_t, A_t)$$

This model can be used to learn policies for <u>any</u> given preferences!

GPI Prioritized Dyna (GPI-PD)

Policies learned via a Dyna-style approach

for *H Dyna steps* do Sample $S \sim \mathcal{B}$ according to P_{w_t} (Eq. (10)) $A \leftarrow \pi^{\text{GPI}}(S; w_t); (\hat{S}', \hat{\mathbf{R}}) \sim p_{\varphi}(\cdot | S, A)$ Add $(S, A, \hat{\mathbf{R}}, \hat{S}')$ to $\mathcal{B}_{\text{model}}$

Prioritizes experiences for which GPI results in larger performance improvements

GPI-PD with Function Approximation

Conditioned Action-Value Functions

 $Q_{\theta}(s, a, \mathbf{w}) \approx \mathbf{q}^{\pi_{\mathbf{w}}}(s, a)$ $\pi^{\text{GPI}}(s; \mathbf{w}) \in \underset{a \in \mathcal{A}}{\operatorname{arg max}} \max_{\mathbf{w}' \in \mathcal{M}} Q_{\theta}(s, a, \mathbf{w}') \cdot \mathbf{w}$

- Continuous Actions
 - MOTD3 Multi-objective TD3

$$\nabla J(\phi; \mathbf{w}) = \nabla_a \mathbf{Q}_{\theta}(s, a, \mathbf{w}) \cdot \mathbf{w}|_{a = \pi_{\phi}(s, \mathbf{w})} \nabla_{\phi} \pi_{\phi}(s, \mathbf{w})$$

Experiments

- Three environments: Deep Sea Treasure, Minecart, and MO-Hopper
 - Discrete and continuous state and action spaces

• Evalution metrics: *Expected Utility* (EU) and *Maximum Utility Loss* (MUL)

$$EU(\Pi) = \mathbb{E}_{\mathbf{w} \sim \mathcal{W}}[\max_{\pi \in \Pi} v_{\mathbf{w}}^{\pi}]$$
$$MUL(\Pi) = \max_{\mathbf{w} \in \mathcal{W}}(v_{\mathbf{w}}^* - \max_{\pi \in \Pi} v_{\mathbf{w}}^{\pi})$$

MineCart

- GPI-LS and GPI-LS+GPI-PD consistently identify near optimal solutions
- Our methods' performance metrics strictly dominate that of competitors

MO Hopper

 Our methods achieve higher expected utility and converged to better solutions

Require ten times fewer
 environment interactions
 compared to SOTA method

MO Hopper – Pareto Front

Conclusion

- We introduced two principled GPI-based prioritization methods
 - Monotonically improve the quality of the set of policies
 - Guaranteed to identify (near) optimal set of policies
- GPI-PD is the first model-based MORL algorithm for continuous states

- Outperforms state-of-the-art MORL algorithms in challenging tasks
 - Significantly improves sample-efficiency

Python tests passing pre-commit enabled code style black

MO-Gymnasium: Multi-Objective Reinforcement Learning Environments

MO-Gymnasium is an open source Python library for developing and comparing multi-objective reinforcement learning algorithms by providing a standard API to communicate between learning algorithms and environments, as well as a standard set of environments compliant with that API. Essentially, the environments follow the standard Gymnasium API, but return vectorized rewards as numpy arrays.

The documentation website is at mo-gymnasium.farama.org, and we have a public discord server (which we also use to coordinate development work) that you can join here: https://discord.gg/bnJ6kubTg6.

Alegre et al. 2022. MO-Gym: A Library of Multi-Objective Reinforcement Learning Environments. In Proceedings of the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn 2022.

https://github.com/Farama-Foundation/MO-Gymnasium

Python tests passing pre-commit enabled code style black

MO-Gymna Learning Er

MO-Gymna	Environments				ht
Learning Er	Env	Obs/Action spaces	Objectives	Description	
MO-Gymnasium is an o learning algorithms by well as a standard set o	deep-sea- treasure-v0	Discrete / Discrete	[treasure, time_penalty]	Agent is a submarine that must collect a treasure while taking into account a time penalty. Treasures values taken from Yang et al. 2019.	reinforcement nd environments, as ow the standard
Gymnasium API, but re The documentation we to coordinate developr	resource- gathering-v0	Discrete / Discrete	[enemy, gold, gem]	Agent must collect gold or gem. Enemies have a 10% chance of killing the agent. From Barret & Narayanan 2008.	[.] (which we also use
Alegre et al. 2022. MO-C,	fruit-tree-v0	Discrete /	[nutri1,, nutri6]	Full binary tree of depth d=5,6 or 7. Every leaf contains a fruit with a value for the nutrients Protein-Cathe Fate Vitamine Minoraleands.	

of the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn 2022.

repo status Active 💭 Python tests passing license MIT discord 5 online 📀 pre-commit enabled code style black

imports isort

MORL-Baselines

MORL-Baselines is a library of Multi-Objective Reinforcement Learning (MORL) algorithms. This repository aims at containing reliable MORL algorithms implementations in PyTorch.

It strictly follows MO-Gymnasium API, which differs from the standard Gymnasium API only in that the environment returns a numpy array as the reward.

For details on multi-objective MDP's (MOMDP's) and other MORL definitions, we suggest reading A practical guide to multi-objective reinforcement learning and planning.

Towards Sample-Efficient Multi-Objective Reinforcement Learning

Thank You!

Lucas N. Alegre

github.com/LucasAlegre/morl-baselines

Additional Slides

Stochastic Mixture Model of Dynamics

Dynamics approximated via a bootstrap ensemble of <u>probabilistic neural networks</u>¹ parameterized as <u>multivariate Gaussian distribution</u>

¹K.Chua, R.Calandra, R.McAllister, and S. Levine, "Deep Reinforcement Learning in a Handful of Trials Using Probabilistic Dynamics Models". (NIPS 2018)

Algorithm 1: GPI Linear Support (GPI-LS) **Input**: MOMDP *M* 1 $\pi_{\mathbf{w}}, \mathbf{v}^{\pi_{\mathbf{w}}} \leftarrow \text{NewPolicy}(\mathbf{w} = [1, 0, ..., 0]^{\top})$ 2 $\Pi \leftarrow \{\pi_{\mathbf{w}}\}, \mathcal{V} \leftarrow \{\mathbf{v}^{\pi_{\mathbf{w}}}\}, \mathcal{M} \leftarrow \{\}$ 3 while True do $W_{\text{corner}} \leftarrow \text{CornerWeights}(\mathcal{V}) \setminus \mathcal{M}$ 4 if W_{corner} is empty then 5 return Π, \mathcal{V} ; \triangleright Found CCS (or ϵ -CCS) 6 $\mathbf{w} \leftarrow \arg \max_{\mathbf{w} \in \mathcal{W}_{corner}} (v_{\mathbf{w}}^{GPI} - \max_{\pi \in \Pi} v_{\mathbf{w}}^{\pi})$ 7 $\pi_{\mathbf{w}}, \mathbf{v}^{\pi_{\mathbf{w}}}, \text{done} \leftarrow \text{NewPolicy}(\mathbf{w}, \Pi)$ 8 if done then 9 Add w to \mathcal{M} ; \triangleright Adds w to support of partial CCS 10 Add $\pi_{\mathbf{w}}$ to Π and $\mathbf{v}^{\pi_{\mathbf{w}}}$ to \mathcal{V} 11 $\Pi, \mathcal{V} \leftarrow \text{RemoveDominated}(\Pi, \mathcal{V})$ 12

Algorithm 2: GPI-Prioritized Dyna (GPI-PD)				
¹ Initialize action-value function $Q_{\theta}(s, a, w)$, dynamics model p_{φ} ,				
buffers ${\mathcal B}$ and ${\mathcal B}_{ m model}$, weight support set ${\mathcal M}$				
² $\mathcal{M} \leftarrow$ extrema weights of \mathcal{W} ; w ₀ ~ \mathcal{M}				
3 for $t = 0\infty$ do				
4 Every N time steps do ▷ GPI Linear Support (Alg. 1)				
5 $\mathcal{V} \leftarrow \text{evaluate } \mathbf{v}^{\pi_{\mathbf{W}}} \text{ for all } \mathbf{w} \in \mathcal{M}$				
$6 \qquad \qquad \mathcal{M}, \mathcal{V} \leftarrow \text{RemoveDominated}(\mathcal{M}, \mathcal{V})$				
7 $W_{\text{corner}} \leftarrow \text{CornerWeights}(\mathcal{V})$				
8 Add to \mathcal{M} the top-k weight vectors in \mathcal{W}_{corner} w.r.t.				
$\operatorname{argmax}_{\mathbf{w}\in\mathcal{W}_{\operatorname{corner}}}(v_{\mathbf{w}}^{\operatorname{GPI}}-\max_{\pi\in\Pi}v_{\mathbf{w}}^{\pi})$				
9 if S_t is terminal then				
10 $\mathbf{w}_t \sim \mathcal{M}$				
11 $S_t \sim \mu$				
12 $A_t \leftarrow \pi^{\text{GPI}}(S_t; \mathbf{w}_t)$ (Eq. (11)) \triangleright Follow GPI policy				

13	Execute A_t , observe S_{t+1} , and R_t
14	Add $(S_t, A_t, \mathbf{R}_t, S_{t+1})$ to \mathcal{B} with priority $P_{\mathbf{w}_t}(S_t, A_t)$
15	Update model p_{arphi} with experience tuples from ${\mathcal B}$
16	for <i>H Dyna steps</i> do ▷ GPI-Prioritized Dyna
17	Sample $S \sim \mathcal{B}$ according to P_{w_t} (Eq. (10))
18	$A \leftarrow \pi^{\text{GPI}}(S; \mathbf{w}_t); (\hat{S}', \hat{\mathbf{R}}) \sim p_{\varphi}(\cdot S, A)$
19	Add $(S, A, \hat{\mathbf{R}}, \hat{S}')$ to $\mathcal{B}_{\text{model}}$
	> Update multi-objective Q-function
20	for G gradient updates do
21	Build mini-batch $\{(S_i, A_i, \mathbf{R}_i, S'_i)\}_{i=1}^b$ with βb tuples from
	$\mathcal{B}_{\text{model}}$ and $(1 - \beta)b$ tuples from \mathcal{B}
22	Update Q_{θ} by minimizing $\mathcal{L}(\theta; w_t) + \mathcal{L}(\theta; w')$ w.r.t. θ via
	mini-batch gradient descent, where $\mathbf{w'} \sim \mathcal{M}$
23	Update priorities P_{w_t} of all pairs (S_i, A_i) in the mini-batch