
Multi-target Compiler for the Deployment of

Machine Learning Models

Oscar J. Castro-Lopez

July 11, 2023

University of Luxembourg

Content

Introduction

Compiler

Empirical evaluation

Conclusions

References

1

Introduction

Introduction: Building Machine Learning Models

Building Machine Learning Models

� There is a great interest in building applications infused with

Machine Learning (ML) models.

� Modeling is done by data scientists:

� A role closely related to: math, statistics, domain knowledge of

the data.

� Use tools/languages for a rapid model building/prototyping

(R, Python (libraries), Weka, Knime, SAS, SPSS, etc.)

� Their main objective is to create the best possible model.

2

Introduction: Building Machine Learning Models

Building Machine Learning Models

� There is a great interest in building applications infused with

Machine Learning (ML) models.

� Modeling is done by data scientists:

� A role closely related to: math, statistics, domain knowledge of

the data.

� Use tools/languages for a rapid model building/prototyping

(R, Python (libraries), Weka, Knime, SAS, SPSS, etc.)

� Their main objective is to create the best possible model.

2

Introduction: Building Machine Learning Models

Building Machine Learning Models

� There is a great interest in building applications infused with

Machine Learning (ML) models.

� Modeling is done by data scientists:

� A role closely related to: math, statistics, domain knowledge of

the data.

� Use tools/languages for a rapid model building/prototyping

(R, Python (libraries), Weka, Knime, SAS, SPSS, etc.)

� Their main objective is to create the best possible model.

2

Introduction: Building Machine Learning Models

Building Machine Learning Models

� There is a great interest in building applications infused with

Machine Learning (ML) models.

� Modeling is done by data scientists:

� A role closely related to: math, statistics, domain knowledge of

the data.

� Use tools/languages for a rapid model building/prototyping

(R, Python (libraries), Weka, Knime, SAS, SPSS, etc.)

� Their main objective is to create the best possible model.

2

Introduction: Predictive Modeling Process

Figure 1: CRISP-DM Modeling Process 3

Introduction: Machine Learning Models in Production

ML Deployment

� Once a model has been built, it must be deployed to a

production environment (software/application is put into

operation for its intended use).

� In production it is where the model generates value through

the predictions made on incoming data.

� The process of generating a prediction is also referred as

scoring or inference (depending on the domain).

4

Introduction: Machine Learning Models in Production

ML Deployment

� Once a model has been built, it must be deployed to a

production environment (software/application is put into

operation for its intended use).

� In production it is where the model generates value through

the predictions made on incoming data.

� The process of generating a prediction is also referred as

scoring or inference (depending on the domain).

4

Introduction: Machine Learning Models in Production

ML Deployment

� Once a model has been built, it must be deployed to a

production environment (software/application is put into

operation for its intended use).

� In production it is where the model generates value through

the predictions made on incoming data.

� The process of generating a prediction is also referred as

scoring or inference (depending on the domain).

4

Introduction: Machine Learning Models in Production

ML Deployment

Deployment
General process of taking a model (math function) to a specific

operating environment where it is available for its use (software).

Figure 2: Predictive Model as a Software Unit

5

Introduction: Machine Learning Models in Production

ML Deployment

Deployment
General process of taking a model (math function) to a specific

operating environment where it is available for its use (software).

Figure 2: Predictive Model as a Software Unit

5

Introduction: Machine Learning Models in Production

Building Applications Integrating ML Models

� Deployment of ML models is a challenging task.

� Software in production is developed and maintained by
Software Engineers who:

� Are experts in software building tools: IDE’s, SDK’s,

Frameworks, etc.

� Aim to build software following requirements and quality

attributes.

6

Introduction: Machine Learning Models in Production

Building Applications Integrating ML Models

� Deployment of ML models is a challenging task.

� Software in production is developed and maintained by
Software Engineers who:

� Are experts in software building tools: IDE’s, SDK’s,

Frameworks, etc.

� Aim to build software following requirements and quality

attributes.

6

Introduction: Machine Learning Models in Production

Building Applications Integrating ML Models

� Deployment of ML models is a challenging task.

� Software in production is developed and maintained by
Software Engineers who:

� Are experts in software building tools: IDE’s, SDK’s,

Frameworks, etc.

� Aim to build software following requirements and quality

attributes.

6

Introduction: Deployment issues and approaches

Model building vs Model deployment

� Both processes are done in different languages / environments

� ML models integration must comply with Software design /

architecture

� 60%(2019) and 53%(2022) of ML models are actually never

deployed to production 1

1Gartner 2019: Magic quadrant for data science and machine learning

platforms and Gartner 2022: AI in Organizations

7

Introduction: Deployment issues and approaches

Model building vs Model deployment

� Both processes are done in different languages / environments

� ML models integration must comply with Software design /

architecture

� 60%(2019) and 53%(2022) of ML models are actually never

deployed to production 1

1Gartner 2019: Magic quadrant for data science and machine learning

platforms and Gartner 2022: AI in Organizations

7

Introduction: Deployment issues and approaches

Model building vs Model deployment

� Both processes are done in different languages / environments

� ML models integration must comply with Software design /

architecture

� 60%(2019) and 53%(2022) of ML models are actually never

deployed to production 1

1Gartner 2019: Magic quadrant for data science and machine learning

platforms and Gartner 2022: AI in Organizations

7

Introduction: Deployment issues and approaches

Common deployment approaches are:

� Pipeline, connect software in production with modeling tools.

� In-database, models deployed inside a DBMS invoked by

SQL query (Examples: Teradata, Oracle).

� Manual coding, manually translate the model to a

programming language.

� IoT/Edge-Computing, one-to-one compilation (commonly

Deep learning models).

8

Introduction: Deployment issues and approaches

Common deployment approaches are:

� Pipeline, connect software in production with modeling tools.

� In-database, models deployed inside a DBMS invoked by

SQL query (Examples: Teradata, Oracle).

� Manual coding, manually translate the model to a

programming language.

� IoT/Edge-Computing, one-to-one compilation (commonly

Deep learning models).

8

Introduction: Deployment issues and approaches

Common deployment approaches are:

� Pipeline, connect software in production with modeling tools.

� In-database, models deployed inside a DBMS invoked by

SQL query (Examples: Teradata, Oracle).

� Manual coding, manually translate the model to a

programming language.

� IoT/Edge-Computing, one-to-one compilation (commonly

Deep learning models).

8

Introduction: Deployment issues and approaches

Common deployment approaches are:

� Pipeline, connect software in production with modeling tools.

� In-database, models deployed inside a DBMS invoked by

SQL query (Examples: Teradata, Oracle).

� Manual coding, manually translate the model to a

programming language.

� IoT/Edge-Computing, one-to-one compilation (commonly

Deep learning models).

8

Introduction: Drawbacks of current approaches

� Using a pipeline follows a client-server approach, it can

become a bottleneck for the whole system.

� Scaling a pipeline approach can become a pipeline jungle,

hard to maintain over time [Sculley et al., 2015].

� In-database and IoT-Edge are limited by specific cases.

� Manual coding is a labor-intensive task, prone to errors.

9

Introduction: Drawbacks of current approaches

� Using a pipeline follows a client-server approach, it can

become a bottleneck for the whole system.

� Scaling a pipeline approach can become a pipeline jungle,

hard to maintain over time [Sculley et al., 2015].

� In-database and IoT-Edge are limited by specific cases.

� Manual coding is a labor-intensive task, prone to errors.

9

Introduction: Drawbacks of current approaches

� Using a pipeline follows a client-server approach, it can

become a bottleneck for the whole system.

� Scaling a pipeline approach can become a pipeline jungle,

hard to maintain over time [Sculley et al., 2015].

� In-database and IoT-Edge are limited by specific cases.

� Manual coding is a labor-intensive task, prone to errors.

9

Introduction: Drawbacks of current approaches

� Using a pipeline follows a client-server approach, it can

become a bottleneck for the whole system.

� Scaling a pipeline approach can become a pipeline jungle,

hard to maintain over time [Sculley et al., 2015].

� In-database and IoT-Edge are limited by specific cases.

� Manual coding is a labor-intensive task, prone to errors.

9

Introduction: Formal description of proposed deployment

Deployment task:

Given a predictive model A, which is a computer-generated

mathematical function expressed in language L, we want to

generate A’ expressed in a computer programming language L’,

where A’ is semantically equivalent to A.

Given that ML models can be formally defined, and that we use

modeling tools to built them, we can algorithmically transform it

by using a compiler.

Declarative → Procedural

10

Introduction: Formal description of proposed deployment

Deployment task:

Given a predictive model A, which is a computer-generated

mathematical function expressed in language L, we want to

generate A’ expressed in a computer programming language L’,

where A’ is semantically equivalent to A.

Given that ML models can be formally defined, and that we use

modeling tools to built them, we can algorithmically transform it

by using a compiler.

Declarative → Procedural

10

Introduction: Formal description of proposed deployment

Deployment task:

Given a predictive model A, which is a computer-generated

mathematical function expressed in language L, we want to

generate A’ expressed in a computer programming language L’,

where A’ is semantically equivalent to A.

Given that ML models can be formally defined, and that we use

modeling tools to built them, we can algorithmically transform it

by using a compiler.

Declarative → Procedural

10

Introduction: Formal description of proposed deployment

Deployment task:

Given a predictive model A, which is a computer-generated

mathematical function expressed in language L, we want to

generate A’ expressed in a computer programming language L’,

where A’ is semantically equivalent to A.

Given that ML models can be formally defined, and that we use

modeling tools to built them, we can algorithmically transform it

by using a compiler.

Declarative → Procedural

10

Compiler

Compiler

We developed a multi-target compiler to translate Machine

Learning models into source code to automate the

deployment to production environments

Figure 3: Multi-target compiler that translates ML models to source code

We can effectively automate the deployment task with a compiler

11

Design of the multi-target compiler

Figure 4: General design of the proposed multi-target compiler.

12

Intermediate Representation Template pt. 1

PROGRAM

Type: string id: nn_predict FORMALLIST VARDECLIST STATEMENT return

FORMAL

Type:double [] id: I

VARDECL VARDECL

Type:double [][] id: G Values

DOUBLE_LITERAL

...

DOUBLE_LITERAL

Type:double [][] id: W Values

DOUBLE_LITERAL

...

DOUBLE_LITERAL

= FEEDFORWARD(G, W)

G[0].v I

G[n].v

Figure 5: Example of a IR template for a neural network.

13

Intermediate Representation Template pt. 2

FEEDFORWARD

for

(= ; < ; k) { for }

k 1 k n ++ (= ; < ; u) { = }

u 0 u G[k].n ++ G[k][u].v ACTFUN

DOT

G[k-1].v G[k][u].w

Figure 6: Example of feed forward computation of a neural network.

14

Implementation of the multi-target compiler

Figure 7: Implementation of the multi-target compiler.

15

Empirical evaluation

Validation and Evaluation

� The first validation is the correctness of the generated code.

Predictions must be equal in the original model creation tool

and generated code.

� Evaluation, testing the efficiency of the execution of the

predictive models by using the generated code by the compiler.

16

Validation and Evaluation

� The first validation is the correctness of the generated code.

Predictions must be equal in the original model creation tool

and generated code.

� Evaluation, testing the efficiency of the execution of the

predictive models by using the generated code by the compiler.

16

Sequential experiments GLM models

Workflow

0

50

100

150

200

250

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

C Java R

DCCC

0

50

100

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

C Java R

EGSS

0

20

40

60

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

C Java R

OSPI

17

Sequential experiments GLM models

Workflow

0

50

100

150

200

250

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

C Java R

DCCC

0

50

100

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

C Java R

EGSS

0

20

40

60

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

C Java R

OSPI

17

Sequential experiments GLM models

Workflow

0

50

100

150

200

250

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

C Java R

DCCC

0

50

100

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

C Java R

EGSS

0

20

40

60

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

C Java R

OSPI

17

Sequential experiments GLM models

Workflow

0

50

100

150

200

250

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

C Java R

DCCC

0

50

100

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

C Java R

EGSS

0

20

40

60

100 200 400 600 800 1000

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

C Java R

OSPI

17

Sequential and parallel experiments with a SVM binary class

model

Workflow

0

2k

4k

6k

0.480.96 1.93 3.86 5.78 7.71 9.64

Size of data in GB

T
im

e
 i

n
 s

e
c

o
n

d
s

GPU (C CUDA) Multi−Core (C−OpenMP) Single−Core (C)

DCCC dataset
18

GPU Experiments with SVM multi-class model

Workflow

0

200

400

600

800

1 2 4 6 8 10 12 15 20 30

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

Generated Code ThunderSVM

MNIST

0

50

100

1 10 20 40 80 100

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

Generated Code ThunderSVM

Poker

0

50

100

150

200

250

1 2 3

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

Generated Code ThunderSVM

RCV1

19

GPU Experiments with SVM multi-class model

Workflow

0

200

400

600

800

1 2 4 6 8 10 12 15 20 30

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

Generated Code ThunderSVM

MNIST

0

50

100

1 10 20 40 80 100

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

Generated Code ThunderSVM

Poker

0

50

100

150

200

250

1 2 3

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

Generated Code ThunderSVM

RCV1

19

GPU Experiments with SVM multi-class model

Workflow

0

200

400

600

800

1 2 4 6 8 10 12 15 20 30

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

Generated Code ThunderSVM

MNIST

0

50

100

1 10 20 40 80 100

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

Generated Code ThunderSVM

Poker

0

50

100

150

200

250

1 2 3

Scale Factor

E
la

p
s
e

d
 T

im
e

 i
n

 S
e
c

o
n

d
s

Generated Code ThunderSVM

RCV1

19

GPU Experiments with SVM multi-class model

Workflow

0

200

400

600

800

1 2 4 6 8 10 12 15 20 30

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

Generated Code ThunderSVM

MNIST

0

50

100

1 10 20 40 80 100

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

Generated Code ThunderSVM

Poker

0

50

100

150

200

250

1 2 3

Scale Factor

E
la

p
s
e
d

 T
im

e
 i
n

 S
e
c
o

n
d

s

Generated Code ThunderSVM

RCV1

19

Conclusions

Conclusions

� We presented a compiler to translate ML models to source

code.

� The code can be embedded inside operational environments

(i.e. automate deployment) and is self-contained.

� We can effectively reduce the time-to-deploy.

� We can leverage sequential and parallel architectures for

efficient scoring in production environments.

� The modularity in our compiler allows for an easy extension of

both new types of models and new target languages.

20

Conclusions

� We presented a compiler to translate ML models to source

code.

� The code can be embedded inside operational environments

(i.e. automate deployment) and is self-contained.

� We can effectively reduce the time-to-deploy.

� We can leverage sequential and parallel architectures for

efficient scoring in production environments.

� The modularity in our compiler allows for an easy extension of

both new types of models and new target languages.

20

Conclusions

� We presented a compiler to translate ML models to source

code.

� The code can be embedded inside operational environments

(i.e. automate deployment) and is self-contained.

� We can effectively reduce the time-to-deploy.

� We can leverage sequential and parallel architectures for

efficient scoring in production environments.

� The modularity in our compiler allows for an easy extension of

both new types of models and new target languages.

20

Conclusions

� We presented a compiler to translate ML models to source

code.

� The code can be embedded inside operational environments

(i.e. automate deployment) and is self-contained.

� We can effectively reduce the time-to-deploy.

� We can leverage sequential and parallel architectures for

efficient scoring in production environments.

� The modularity in our compiler allows for an easy extension of

both new types of models and new target languages.

20

Conclusions

� We presented a compiler to translate ML models to source

code.

� The code can be embedded inside operational environments

(i.e. automate deployment) and is self-contained.

� We can effectively reduce the time-to-deploy.

� We can leverage sequential and parallel architectures for

efficient scoring in production environments.

� The modularity in our compiler allows for an easy extension of

both new types of models and new target languages.

20

References

References i

Lopez-Rojas, E., Elmir, A., and Axelsson, S. (2016).

PaySim: A financial mobile money simulator for fraud detection.

In Proceedings of the European Modeling and Simulation Symposium, pages

249–255, Larnaca, Cyprus. Dime University of Genoa.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D.,

Chaudhary, V., Young, M., Crespo, J.-F., and Dennison, D. (2015).

Hidden technical debt in machine learning systems.

In Advances in Neural Information Processing Systems, pages 2503–2511.

Yeh, I.-C. and hui Lien, C. (2009).

The comparisons of data mining techniques for the predictive accuracy of

probability of default of credit card clients.

Expert Systems with Applications, 36(2, Part 1):2473 – 2480.

21

Current work/interests:

� Speeding up programs.
� Special focus on Python.

� Improving performance of DS/ML pipelines.

� Code compilation/optimization.

� Developing libraries: HPC, CUDA, Big Data.

� Applied DS/ML.

Thank you!!

Any questions?

Email: oscar.castro@uni.lu

21

Example of PMML

<PMML version="4.2">
<Header copyright="Copyright (c) 2016 lcid" description="Neural Network PMML Model">
<Extension name="user" value="lcid" extender="Rattle/PMML"/>
<Application name="Rattle/PMML" version="1.4"/>
<Timestamp >2016 -12 -09 18:56:44 </Timestamp >

</Header >
<DataDictionary numberOfFields="9">
<DataField name="MITBEAT_NN_FFT" optype="categorical" dataType="string">
<Value value="A"/>
<Value value="N"/>

</DataField >
<DataField name="V1" optype="continuous" dataType="double"/>

...
</DataDictionary >
<NeuralNetwork modelName="NeuralNet_model" functionName="classification" numberOfLayers="3"

activationFunction="logistic">
...

<OutputField name="Predicted_MITBEAT_NN_FFT" feature="predictedValue"/>
<OutputField name="Probability_A" optype="continuous" dataType="double" feature="probability"

value="A"/>
<OutputField name="Probability_N" optype="continuous" dataType="double" feature="probability"

value="N"/>
</Output >
<NeuralInputs numberOfInputs="8">

...
</NeuralInputs >
<NeuralLayer numberOfNeurons="28">
<Neuron id="9" bias="0.83109384784387">
<Con from="1" weight=" -1.58888618835219"/>

...
</Neuron >...
</Neuron >

</NeuralLayer >
<NeuralLayer numberOfNeurons="2" activationFunction="threshold" threshold="0.5">
<Neuron id="38" bias="1.0">
<Con from="37" weight=" -1.0"/>

</Neuron >...
</NeuralLayer >
<NeuralOutputs numberOfOutputs="2">
<NeuralOutput outputNeuron="38">
<DerivedField name="derivedNO_MITBEAT_NN_FFT" optype="continuous" dataType="double">
<NormDiscrete field="MITBEAT_NN_FFT" value="A"/>

</DerivedField >
</NeuralOutput >
<NeuralOutput outputNeuron="39">
<DerivedField name="derivedNO_MITBEAT_NN_FFT" optype="continuous" dataType="double">
<NormDiscrete field="MITBEAT_NN_FFT" value="N"/>

</DerivedField >
</NeuralOutput >

</NeuralOutputs >
</NeuralNetwork >

</PMML>

21

Example of generated C code

double *predicted_mitbeat_nn_fft(double in_v1 , double in_v2 , double in_v3 , double in_v4 , double
in_v5 , double in_v6 , double in_v7 , double in_v8){

// Variable transformation
double new_v1 = in_v1;
...
// layer
static double layer0 [28];
layer0 [0] = 1*0.83109384784387+ new_v1 * -1.58888618835219+ new_v2 * -1.82672308266525+ new_v3

*3.33746196373367+ new_v4 * -0.386660430766735+ new_v5 *2.37454410956807+ new_v6
* -1.30898075446596+ new_v7 * -1.43872713454692+ new_v8 *2.4529341743543;

layer0 [0] = 1 / (1+exp(-layer0 [0]));
...
// layer
static double layer1 [1];
layer1 [0] = 1* -4.62592500800819+ layer0 [0]* -1.03197631554537+ layer0 [1]*6.43276062612687+

layer0 [2]*3.06106357914918+ layer0 [3]*4.25114324158677+ layer0 [4]* -1.81616145986666+
layer0 [5]* -2.64384641103975+ layer0 [6]* -1.5951340774553+ layer0 [7]*1.27863903623786+
layer0 [8]*0.707355744671864+ layer0 [9]* -1.76172788928607+ layer0
[10]*0.532128214238061+ layer0 [11]* -1.96944871187955+ layer0 [12]* -1.75845939045056+
layer0 [13]* -1.08114467050309+ layer0 [14]*1.75717862584521+ layer0
[15]* -0.364837336276863+ layer0 [16]*0.991809219615911+ layer0
[17]* -0.194322645909799+ layer0 [18]* -1.16222444790653+ layer0 [19]* -2.48554250501996+
layer0 [20]* -0.225800791983646+ layer0 [21]* -0.957736167039977+ layer0
[22]* -2.89636184187767+ layer0 [23]*5.69469441754116+ layer0 [24]*0.730216654347973+
layer0 [25]* -2.22926009625776+ layer0 [26]* -3.14190898011756+ layer0
[27]*2.20678305117676;

layer1 [0] = 1 / (1+exp(-layer1 [0]));

// layer
static double layer2 [2];
layer2 [0] = 1*1.0+ layer1 [0]* -1.0;
layer2 [0] = (layer2 [0] >0.5)? 1.0 : 0.0;
layer2 [1] = 1*0.0+ layer1 [0]*1.0;
layer2 [1] = (layer2 [1] >0.5)? 1.0 : 0.0;

return layer2;
}
char const * predicted_mitbeat_nn_fft_response(double probabilities []){

char const * labels [] = {"A", "N"};
int max = 0;
int i;
for (i = 1; i < 2; i++) {

if(probabilities[i]>probabilities[max])
max =i;

}
return labels[max];

}

21

Datasets

� DCCC. Default of Credit Card (Kaggle).

� EGSS. Electrical Grid Stability Simulated (UCI).

� OSGI. Online Shoppers’ Purchasing Intention (UCI).

� MNIST. It is a database of images of handwritten digits (LIBSVM

Data).

� Poker. This is the poker hand dataset (LIBSVM Data).

� RCV1. This is the Reuters Corpus Volume 1 dataset (LIBSVM

Data).

� Kaggle: https://www.kaggle.com/datasets

� UCI: https://archive.ics.uci.edu/ml/datasets.php

� LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/multiclass.html

21

https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/datasets.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

Computer equipment

� Workstation Intel Xeon W-2133 CPU 6 cores 3.60 GHz, 64

GB RAM.

� GPU GeForce GTX 1080 8GB RAM, 2,560 CUDA cores.

21

	Introduction
	Compiler
	Empirical evaluation
	Conclusions
	References

