
Constraint Programming with External

Worst-Case Traversal Time Analysis

Pierre Talbot

pierre.talbot@uni.lu

16th May 2023

University of Luxembourg

Context of the Work

Collaboration with Nicolas Navet and Tingting Hu.

• In the research group Critical Real-Time Embedded Systems.

• Connection with the automotive industry (BMW, Mercedes-Benz,

Renault, etc.)

1

Automotive Network

2

Worst-case Traversal Time (WCTT)

The worst-case traversal time (WCTT) analysis is a formal method

guaranteeing the end-to-end delay of network packets.

• Let asn be a deployment of services on processors.

• WCTT is a function f (asn) returning true or false if the analysis

passes.

• We seek a deployment minimizing cost, maximizing extensibility, etc.

Problem: exploring all assignments is too time-consuming.

3

Constraint Programming

There are several constraints that prune the search space:

• The capacity of each CPU is not exceeded.

• The capacity of each network link is not exceeded.

But this is not enough! We still need to call the WCTT analysis.

How to integrate constraint programming with the
WCTT analysis?

4

Related Work

Controller Area Network (CAN)

• WCTT over CAN network is simple and actually exact.

• Various approaches to tackle this problem such as with genetic

algorithm, MIP, constraint programming.

• Both the constraint part and the analysis part are represented in the

model.

Only recently Kugele et al. (2021) considered the deployment over

Ethernet networks with SMT solvers—but small network (3 CPUs),

generate-and-test algorithm, and no constraint model provided.

5

Contributions

• In distributed embedded system: A multi-objective constraint model

of the deployment problem over Ethernet network.

• In constraint programming: A new multi-objective optimization

algorithm cusolve mo integrating external function calls during

solving.

• Proofs of correctness of the algorithms.

6

Under-Approximating External Function

6

WCTT External Function

• An assignment asn ∈ asn is a function from services to CPUs.

• The WCTT external function accepts or rejects assignments if they

pass the analysis:

uf : asn→ {true, false}

• The solutions induced by the external function is:

sol(U) := uf −1(true) = {asn ∈ asn | uf (asn) = true}

where U is the constraint model implicitely represented by uf .

The external function can be slow (1.5s for the WCTT), therefore

searching in the whole assignments space is not practical.

7

Sandwiching the Problem

Modelling the traversal time analysis as a (hypothetical) constraint

problem P is too difficult, so we “sandwich” the problem between an

under-approximating problem U and an over-approximatin problem O.

• On the one hand, uf is under-approximating because it discards

possible solutions:

sol(U) ⊆ sol(P)

• On the other hand, we can over-approximate P by a constraint

model O, accepting assignments that are not solutions:

sol(P) ⊆ sol(O)

sol(U) ⊆ sol(P) ⊆ sol(O)

8

Sandwiching the Problem

Modelling the traversal time analysis as a (hypothetical) constraint

problem P is too difficult, so we “sandwich” the problem between an

under-approximating problem U and an over-approximatin problem O.

• On the one hand, uf is under-approximating because it discards

possible solutions:

sol(U) ⊆ sol(P)

• On the other hand, we can over-approximate P by a constraint

model O, accepting assignments that are not solutions:

sol(P) ⊆ sol(O)

sol(U) ⊆ sol(P) ⊆ sol(O)

8

Over-Approximating Constraint Model

8

Constraint Programming in a Nutshell

Constraint satisfaction problem (CSP)

A CSP is a pair ⟨d ,C ⟩, example:

⟨{x1 7→ {1, 2, 3, 4}, x2 7→ {2, 3, 4}}, {x1 ≥ x2, x1 ̸= 4}⟩

A solution is {x1 7→ 2, x2 7→ 2}.

9

How Does a Constraint Solver Work?

A constraint solving algorithm: propagate and search

• Propagate: Remove inconsistent values from the variables’ domain.

x1 ≥ x2 {x1 7→ {1, 2, 3, 4}, x2 7→ {2, 3, 4}}
x1 ̸= 4 {x1 7→ {2, 3, 4}, x2 7→ {2, 3, 4}}
x1 ≥ x2 {x1 7→ {2, 3}, x2 7→ {2, 3, 4}}
x1 ̸= 4 {x1 7→ {2, 3}, x2 7→ {2, 3}}
x1 ≥ x2 {x1 7→ {2, 3}, x2 7→ {2, 3}}

• Search: Divide the problem into (complementary) subproblems

explored using backtracking.

• Subproblem 1: ⟨{x1 7→ {2}, x2 7→ {2, 3}}, {x1 ≥ x2, x1 ̸= 4}⟩
• Subproblem 2: ⟨{x1 7→ {3}, x2 7→ {2, 3}}, {x1 ≥ x2, x1 ̸= 4}⟩

10

Constraint solver: propagate and search

A classic solver in constraint programming:

function solve(⟨d ,C ⟩)
⟨d ′,C ⟩ ← propagate(⟨d ,C ⟩)
if d ′ is an assignment then

return {d ′}
else if d ′ has an empty domain then

return {}
else

⟨d1, . . . , dn⟩ ← branch(d ′)

return
⋃n

i=0 solve(⟨di ,C ⟩)
end if

end function

11

Constraint Model of the Deployment Problem

We define a tuple ⟨d ,C ⟩ where d : Var → D is a function mapping

variable to domains, and C is a set of constraints.

• Constants: Set S = {s1, . . . , sn} of services and H = {h1, . . . , hm}
of CPUs.

• Variables: d(si) = H, initially each service si can be allocated on

any CPU.

• Constraints: Ensure the utilization rate of the the processor

(function hc) is not exceeded:

∀h ∈ H,
∑

s∈d−1(h)

sc(s) ≤ hc(h)

where sc : S → Z is the CPU utilization of the services.

• A solution is a function d : S → H, where each service is allocated

on one CPU.

12

Constraint Model of the Deployment Problem

Multi-objective Optimization Problem

• Extensibility: Minimize the maximum utilization rate of a processor:

min max
h∈H

∑
s∈d−1(h)

sc(s)

• Extensibility: Same with network link.

• Cost: Minimize the number of processors used:

min |d(S)|

13

Algorithms

13

Two Phase Algorithm: osolve mo then uf

Algorithm

• Compute the Pareto front of the over-approximating model O.

• Filter the solutions of O passing the WCTT analysis.

But osolve mo then uf can prune solutions from sol(U), so the

Pareto front is not necessarily optimal.

14

Integrated Algorithm: usolve mo

function usolve mo(O, uf , ⊔, opt)
U ← {}
asn← solve(O)

while asn ̸= {} do
if uf (asn) = true then

U ← U ⊔ {asn}
O ← O ∧ opt(asn)

else

O ← O ∧ ¬asn
end if

asn← solve(O)

end while

return U

end function

15

Conflicts from uf

The WCTT analysis returns which communications fail to pass the

analysis.

⇒ Generate new constraints based on this information.

⇒ uf : asn→ C .

Examples of Conflicts

Suppose the communication between the services x and y fail:

• Forbid source (FS): d(x) ̸∈ {asn(x), asn(y)}
• Forbid target (FT): d(y) ̸∈ {asn(x), asn(y)}
• Decreasing hops (DH): |path(d(x), d(y))| < |path(asn(x), asn(y))|

(In the paper cusolve_mo to take into account conflicts that are not

over-approximating).

16

Experiments

16

Description of the Experiments

Setting

• AMD Epyc ROME 7H12 processor (64 cores, 280W).

• solve implemented by GeCode 6.3.0 in parallel mode with 8

cores (16 threads), timeout 30 minutes.

Experiments

• Instances derived from a realistic automotive Ethernet network

consisting of 19 network devices (14 ECUs and 5 switches).

• 5 instances of 50 services, 5 instances of 75 services and 8 instances

of 100 services.

• For each of the 18 instances, we generated 10 versions where the

sum of all computational requirements is 20%, 40%, 60%, 80% and

90% of the total computational capacity of all ECUs with a uniform

distribution among services.

17

osolve mo then uf

• Low number of services (50): 14/15 instances have the same

hypervolume before and after filtering.

• For 75 and 100 services: 24/30 instances with an hypervolume

within 3% of the unfiltered hypervolume.

• Still, some instances with filtered hypervolume below 75% of the

unfiltered hypervolume.

18

Cumulated Hypervolume Score

Cumulated hypervolume score for each experiment over all instances.

DH∧ DH∨ DML MO UF D1L FS∨ FT∨ NA FST∨ FS∧ FT∧ FST∧

0

10

20

30

40

S
co
re

uf conflicts

uf solutions

19

Best Hypervolume

Number of times each experiment computed the best hypervolume.

DH∧ DH∨ FST∧ FST∨ DML D1L FS∧ FS∨ MO UF NA FT∧ FT∨

0

5

10

15

B
es
t
h
yp

er
vo
lu
m
es

20

Conclusion

• Problems from the industry are often unpure.

• Need to reuse existing code, blackbox functions.

• We propose an approach integrating under-approximating blackbox

functions in constraint programming.

More in the paper

• Multi-objective algorithm when external function generates conflicts.

• Proofs of correctness of all algorithms.

21

