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Abstract—Achieving and maintaining high allocations to Pri-
vate Equity and keeping allocations at the targeted level through
recommitment strategies is a complex task which needs to be
balanced against the risk of becoming a defaulting investor.
When looking at recommitments we are quickly faced with a
combinatorial explosion of the solution space, rendering explicit
enumeration impossible. As a consequence, manual management
if any is becoming time-consuming and error-prone. For this
reason, investors need guidance and decision aid algorithms pro-
ducing reliable, robust and trustworthy recommitment strategies.
In this work, we propose to generate automatically recommitment
strategies based on the evolution of symbolic expressions to
provide clear and understandable decision rules to Private Equity
experts and investors. To the best of our knowledge, this is the
first time a methodology to learn recommitment strategies using
evolutionary learning is proposed. Experiments demonstrate the
capacity of the proposed approach to generate efficient and robust
strategies, keeping a high degree of investment while bounding
the risk of being overinvested.

Index Terms—Private Equity, Genetic Programming, Evolu-
tionary Learning

I. INTRODUCTION

In recent years institutional investors – e.g. pension funds,
insurers, endowments, development banks and sovereign
wealth funds – have been building up sizable allocations to
Private Equity (PE) and real assets (mainly infrastructure,
real estate, forestry and farmland, energy and commodities).
Successfully entering, managing, and exiting direct invest-
ments requires a high level of expertise, experience and
staff incentives that most institutional investors are unable to
provide. Therefore, their preferred modus operandi is investing
indirectly as so-called limited partners (LPs) through limited
partnership funds in which they commit a certain amount of
capital for a given period of time. Commitments are binding
and the related capital is progressively called over several
years depending on the fund’s management strategy. Unfor-

tunately, capital calls cannot be known in advance leading
to unallocated capital waiting to be called. To make matters
worse, the committed capital is not entirely called before the
fund starts distributing from divestments. These distributions
occur when the fund is only few years old and can only be
reinvested by committing to new PE funds. Generally, all the
committed capital is not entirely drawn down which impacts
the investor’s exposure. Therefore, the capital actually invested
(see [18]) is often thought to be the true exposure to PE.
This is debatable as the LP’s liquidity risk is the highest
at the time of the commitment and during the fund’s early
years when the bulk of the capital is yet to be called but its
investment level has not reached its peak. Investors need to
draft a commitment-pacing strategy, i.e., on how to size and
time their commitments in order to achieve and maintain the
targeted allocation to PE while complying with the liquidity
constraints imposed by the uncalled capital. So far portfolio
models based on cash-flows tend to be over-simplistic and
usually focus on commitment-pacing. Usually these models
are spreadsheet-based, very simple and work through “trial-
and-error”. The impact of (alleged) skills when selecting high-
quality funds is either not reflected or over-estimated. Often
for the targeted portfolio composition there are no funds with
desired characteristics available or not available at the time.
Also, the interaction with the secondary market for funds is
difficult to factor in, as they tend to arise precisely when LPs
experience liquidity problems. The costs of maintaining the
uncalled capital as dry powder is a widely overlooked expense
of investing in PE [1] and still ignored by academic research
[16]. In practice, LPs therefore run so-called overcommitment
strategies, i.e., committing more capital in aggregate than ac-
tually available as dedicated resources, with the gap expected
to be filled by future distributions from the existing portfolio
of funds. Overcommitments share important commonalities



with leverage strategies and show similar rewards and risks,
notably that of becoming a defaulting investor and incurring
significant financial and reputational penalties. Achieving and
maintaining high allocations to PE and keeping them at the
targeted level is a complex task and needs to be balanced
against the risk of becoming a defaulting investor. According
to de Zwart in [8], this issue has received very little attention
in the literature. Existing strategies are often naive and man-
ually designed despite the fact that the costs of inefficiently
(re)committing can be significant.

In this paper, we propose to go beyond handcrafted and
over-simplistic commitment strategies using a simulation-
based approach to discover new promising strategies. For this
purpose, we consider an evolutionary learning approach based
on the generation of symbolic expressions. These expressions
are evolved with a Genetic Programming (GP) algorithm spe-
cially tailored for this task. The choice of symbolic expressions
reflects the need for trustworthiness to have a correct under-
standing of their meaning. Although many learning approaches
such as Deep learning have gained popularity, they remain
a black box for many decision makers who struggle to put
them into production especially in PE where data is somehow
lacking.

The remainder of this paper is organized as follows. The
next section provides a state of the art on existing recom-
mitment strategies and describes related approaches based on
symbolic expressions to tackle optimisation problems. Section
III introduces formally the Private Equity Recommitment
Problem (PERP). Section IV details the proposed methodol-
ogy to learn recommitment strategies. Experiment setups and
results are discussed in section V and VI. Finally, the last
section provides our conclusions and proposes some possible
perspectives.

II. RELATED WORKS

Recommitment strategies are essential to keep investor
constantly invested at some target allocation. To the best of our
knowledge, few studies have tried to model this as an optimi-
sation problem. They generally rely on some rules of thumb
lacking robustness and flexibility. In [5], authors considered
that the entire PE allocation should be recommitted to new
funds every year without taking into account past portfolios
evolution. Nevin et al. in [17] based their recommitment strat-
egy on average rates of distributions and commitments. New
commitments should be made if the committed capital does
not reach a target threshold to compensate the difference. This
strategy assumes constants rates which seems very illusory
over time. In [8], de Zwart et al. proposed recommitment
strategies for funds aiming to maintain stable the exposure
to PE. The strategy’s key feature is the level of new com-
mitments in a given period which depends on the current
portfolio’s characteristics. Importantly, de Zwart’s strategies
does not require to forecast funds’cashflows. Although they
consider 100% PE portfolios, their last suggested strategy is
a first attempt to design dynamic recommitment strategies
relying on past portfolio development. Finally, Oberli et al. in

[18] extended de Zwart’s work to multi-asset class portfolios
including stocks and bonds.

These two last contributions solely rely on handcrafted
recommitment strategies to control the investment degree (ID),
i.e., PE exposure. While they are innovative and improving
attempts without the need to forecast future cashflows, they
have been built on specific and limited datasets with given
market conditions. Building recommitment strategies in var-
ious market conditions is a challenging task. In this work,
we investigate Evolutionary Learning to discover promising
recommitment strategies modeled as symbolic expressions.
This is the reason why we first discuss different domains where
learning symbolic expressions have been very promising.

Learning symbolic expressions have been extensively con-
sidered for regression tasks [29] in which an interpretable
model is fitted to data. Nevertheless, discovering symbolic
expressions can be extended to solve general optimisation
problems. Indeed, hyper-heuristics, i.e., a class of metaheuris-
tics to generate heuristics, have been successfully employed
to generate scoring functions for the Multi-dimensional Knap-
sack [10], [14]. Recent works [11], [15] focus on heuristic gen-
eration to provide a systematic and automatic way to generate
directly heuristics components going from simple expressions
to full blocks of code. The literature is replete with approaches
relying on GP algorithms which evolve Abstract Syntax Trees
(AST). The suitability of GP algorithms has been established
by Fukunaga in [13] for the well-known SAT problem. They
have the major advantage to automatize the assembly of the
components required to create a heuristic. Recent variants such
as Cartesian GP algorithms and Grammar-based GP algorithms
are improvements of the classical GP algorithms. Cartesian
GP algorithms is an alternative form that encodes a graph
representation of a computer program. The Cartesian variant
defines explicitly a size preventing bloat but can be very
sensitive to parameters. In Grammar-based versions [2], [23],
[24], a grammar in Backus-Naur Form (BNF) is considered to
map linear genotypes to phenotype trees and have thus less
structural difficulties. Heuristic generation encountered real
successes in combinatorial optimization problems [21], [22]
and more specifically in cutting and packing [4], scheduling
[3] and other additional domains such as function optimization
[20], real-time logistics [26].

Although their applications have been widely considered for
discovering novel optimisation heuristics to NP-hard problems,
GP algorithms and its variants have demonstrated capabilities
in Evolutionary Learning. Wilson et al. in [28] have shown
image processing aptitudes by evolving code with function sets
dedicated for computer vision. Using a Cartesian GP variant,
they confirmed that evolved controllers are competitive with
state-of-the-art approaches for the Atari benchmark set and
more important, they required less training time. Stock Price
Prediction using Grammar Evolution have been successfully
investigated in [9]. The authors observed that the effect of
tweaking the grammar rules to provide different production
options has a sensible impact on the prediction quality. Evo-
lutionary Learning using the GP family of approaches have
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Fig. 1. Evolution of the Net Asset Value, cumulative distributions and
contributions

been also naturally found in Automated Machine Learning
(AutoML). Oslon et al. in [19] considered a GP algorithm to
evolve a set of data transformations and Machine Learning
models in their well-known tree-based pipeline optimisation
tool (TPOT). Hyperparameters optimisation has been also a
subject of investigation with the autostacker method developed
by Chen et al. in [6].

III. PRIVATE EQUITY RECOMMITMENT PROBLEM (PERP)

The Private Equity Recommitment Problem is essentially a
target allocation problem for an investor who decides to own
a PE portfolio. Once capital has been committed to a fund, it
is drawn down progressively during the investment period and
the Net Asset Value (NAV ) steadily increases until reaching
a peak around the halfway point of the fund lifetime. PE funds
have generally a lifetime ranging from 10 to 14 years. Once
this peak has passed, the fund enters into a second phase called
the divestment period in which the NAV starts decreasing
due to distributions while capital calls strongly decline. Both
periods are depicted in Fig. 1 for a single PE fund. One
can observe that the maximum investment into the fund is
made during a very short period of time. This is the reason
why its is crucial to take advantage of the uncalled capital
and possible early distributions by recommitting into new PE
funds to counter-balance the opportunity cost and minimize
underinvestment.

In order to quantify the true exposure, an investor should
rely on the fraction of total allocated capital that is actually
invested which can be defined as

IDt =
NAVt

NAVt + Casht
(1)

where NAVt =
N(t)∑
f

NAV ft represents the NAV of all

invested funds in the portfolio at period t. Casht accounts for

the global uninvested cash in the portfolio, i.e., uncalled capital
and distributions. Investors are looking for an investment
degree approaching 1 from below by minimizing the dry
powder (Cashft ) which should be ideally close to 0. The com-
bination of multiple invested funds obtained with an intelligent
recommitment pacing is a guarantee to maintain a high invest-
ment degree/exposure. Nevertheless, recommitments should be
carefully estimated to avoid cash shortages, i.e., Casht < 0
or IDt > 1.0. The latter happens only if the call requirements
exceed the investor resource capacities. Becoming a defaulting
investor once capital has been committed is subject to strong
financial and reputational penalties. Being fully invested is
thus a complex task for an investor which can be modeled
as an optimisation problem. The latter referred to as PERP is
a multi-period dynamic portfolio optimisation problem which
is generally decomposed into a sequence of multiple single-
period portfolio optimisation problems solved at each period
t. Each single-period portfolio optimisation maximizes the
investment degree at t+ 1:

min
Ct

Et
[
(1− IDt+1)

2
]

(2)

The optimal level of commitment at period t is therefore:

Ct = Et

(
Casht +Dt+1 −

∑τ
i=1 γt+1,i+1Ct−i

γt+1,1

)
(3)

with Ct the commitmment solution, Et the conditional
expectation, Casht the uninvested cash in the portfolio, Dt+1

representing distributions for the next period, Ct−i the capital
committed i period ago and γt+1,i+1 is the fraction of the
capital committed i periods ago. γt+1,i+1 permits to define
the total capital call at the end of quarter t+ 1, i.e.,

CCt+1 =
τ∑
i=0

γt+1,i+1Ct−i with τ representing the maximum

fund age at which capital can still be called. Interested readers
can refer to [8] for more details about the proof.

In order to compute the global optimal solution of this
problem with this analytical solution, investors have to forecast
the distributions as well as the capital called at the period t+1.
Furthermore, γt+1,i+1 is determined only by the fund manager
at t + 1. LP investors have no control on this factor. This is
the reason why two approaches have been developed in the
literature so far:

1) Cash flow predictions [7], [25]
2) Recommitment engineering using strategies [8], [18]
Cashflow predictions rely on direct forecasts of the cash

inflows and outflows, .i.e., distributions and contributions
respectively. The quality of the PERP analytical solution
depends directly on the quality of the prediction. The unique
advantage of cashflows prediction is the direct access to the
analytical optimal solution. Its main drawback lies in the
fact that prediction accuracy only occurs towards the end
of the life cycle of funds. The second approach based on
strategies is an indirect approach replacing the analytical
solution by approximation rules which do not rely on any
cashflow predictions. This last point is clearly a leverage when



funds are still at their infancy and cashflow predictions are
not accurate. Nonetheless, discovering such strategies is a
tedious and laborious task requiring multiple trials. In this
work, we propose to automatise this task using evolutionary
learning. The next section will now introduce the proposed
methodology.

IV. LEARNING TO RECOMMIT

The benefit of generating approximation strategies is two-
fold. First, they do not rely on any forecasting approaches
and only exploit existing information. Then, they are more
suitable for analysis by PE experts who can study them
and therefore trust them. As aforementioned in the previous
section, searching strategies require a lot of effort and need
numerous simulations. As a consequence, we propose here-
after to generate recommitment strategies with a GP algorithm
in a similar manner than generative hyper-heuristics build
heuristics for more classical optimisation problems.

A. Building artificial cashflows

In order to simulate portfolio’s dynamic and evaluate recom-
mitment strategies, one has to rely on cashflows data. These
are historical funds’ data that are argued to reflect the “true”
behaviour of funds and thus capture the dynamics of PE and
real assets best. Unfortunately, PE players protect their rich
data histories. Some private market data providers generally
sell data covering very specific periods and economies, but
these data tend to be incomplete. Although, multiple works
relied on these commercial libraries to train their model or
simulate portfolio evolutions over time, we adopt another
strategy to generate these cashflows.

The Yale University’s endowment has been investing in PE
since 1973. Their methodology for modelling illiquid asset
funds as proposed by Takahashi and Alexander (see [25])
is often referred to as the mother of all cashflows’ models.
This Yale-model can be applied to PE and real asset funds,
such as natural resources and infrastructure. The timing of all
cashflows, as well as the return on the committed capital, is
modelled as deterministic, i.e., in contrast to a probabilistic
model, a single run of this model creates just one result
for one set of input parameters and not a range of out-
comes. Nevertheless, according to Takahashi and Alexander,
the projections generated fit historical data surprisingly well.
Instead of depending on a commercial solution to acquire
historical cashflows which are often expensive and incomplete,
synthetic fund cashflows have been preferred in this work
as they represent a more practical solution. These synthetic
fund cashflows are created by funnelling data generated by
the robust and tried-and-tested, albeit over-simplistic, Yale-
model through a noise-adding algorithm to construct a new
dataset. The resulting dataset shows the statistical features and
the useful patterns needed for capturing the liquidity risks
associated with portfolio of funds. The synthetic cashflows
implemented in this work have been provided by T.Meyer, an
expert in PE and co-author of this paper.

B. Simulations and Strategies assessment

Strategies are mathematical expressions computing Ct at
each recommitment period t. They can be evaluated by mean
of portfolios simulations. As reported in [8], dynamic recom-
mitment strategies assume pre-existing portfolios. Therefore,
in this work, we build initial portfolios over one year by
investing uniformly into 16 randomly selected PE funds. A
single simulation consists in investing some capital to new
funds every quarter. The amount of capital is determined by
the strategy employed to recommit. Recommitment capital is
then equally divided and assigned to four randomly selected
new funds. Please note that we strictly follow and use the same
parameters for simulations presented in [8] to fairly compare
the authors’ strategies with the ones obtained in this work. For
that reason, 30 % overcommitment is applied in setting up all
initial portfolios.

Recommitments are performed during T quarters starting
with the first quarter of the second year. Simulations are
stopped only when all underlying PE funds are totally divested.
It is important to see if there is no delay effect when applying
a specific strategy. In summary, active recommitments last
T quarters but simulations keep running until no further
contributions could lead to a cash shortage situation. Once
simulations are over, the inherent investment degrees can be
retrieved to score the strategy quality.

Contrary to the approach proposed in [8] which measures
strategy quality using the average investment degree over all
simulated portfolios for each quarter t, we adopt a differ-
ent perspective. We consider the Upper Confidence Bound
(UCB) as a better indicator in order to prevent cash shortage
situations due to cashflows variability. Indeed, driving the
average investment degree close to the ideal IDt = 1 for all t
will automatically lead to situations in which some simulated
portfolios will be overinvested (IDt > 1) and thus to negative
cash that should be avoided. Fig. 2 illustrates the proposed
Upper Confidence Bound function to evaluate a strategy on a
set of portfolios once simulation has finished. For each period
t, the Upper Confidence Bound is defined as follows:

UCB(t) = Ep(IDt) + 2σp(IDtt) (4)

with Ep(IDt) representing the expected investment degree
and σp(IDtt) the standard deviation at period t. The objective
function obj measures the total deviation to the ideal IDt =
1.0 and is defined as:

obj =

∫ t

t1

|1.0− UCB(t)| ∗ dt +K ∗ (t2 − t) (5)

We introduce a penalizing factor K for simulation ending
prematurely. In the same vein, a portfolio with no cash to
satisfy incoming contributions at t <= t2 is terminated and
gets thus penalized with the factor K. Note also that the
integral in equation 5 is replaced by a discrete sum over all
quarters of the active recommitment period, i.e., t1 ≤ t ≤ t2.



Fig. 2. Objective function using the Upper-Confidence Bound

C. Strategies evolution

Now that we have laid the foundation for scoring a strategy
through portfolio’s simulation, we are going to focus on their
evolution. As aforementioned, a strategy is a mathematical
function f : Rm −→ R computing the amount of capital
to recommit at quarter t. Our intent is to discover such a
function using PE features at our disposal. These features
can only reflect past and current evolution of the underlying
funds. The resulting strategy, i.e., the function, will provide an
approximation of the optimal amount of capital to recommit.
In this work, it has been decided to search the best symbolic
representations with regards to the objective function defined
in the previous section. PE features described in Table I are
thus represented as terminal symbols of an AST and connected
by algebraic operators. Such a symbolic model is hence well
suited for analysis by PE experts who can investigate its
dynamic and increase results reliance.

TABLE I
FUNCTIONS AND TERMINAL SETS IMPLEMENTED IN THIS WORK

Name Description
Operators

+ Add two inputs
- Subtract two inputs
* Multiply two inputs
% Divide two inputs with protection

min Minimum b.t.w. two inputs
max Maximum b.t.w. two inputs

Terminal sets/ Arguments
Ct Contributions at t
Dt Distributions at t
IDt Investment degree at t
NAVt Net Asset Value at t
errort Deviation to ideal ID at t
DZ3(t) deZwart’s strategy n°3 [8] at t
UCt−24 Uncalled capital for commitments made 24 quarters ago

CCommitt−24 Capital committed for 24 quarters

The search for improving strategies is performed according
to a GP algorithm. The latter is described by Algorithm 1. At
each generation, a population of recommitment strategies will
be evaluated using simulations on a set of 250 initial portfolios,
i.e., the training set. Evolutionary operators are applied on
candidate strategies selected with regards to the objective
function. A hall of fame records the best strategy over all
generations. Once evolution reached the maximum number of
generations (NGEN ), the best encountered strategy during
training is returned and then finally scored with a simulation

on a validation set of 1000 initial portfolios. Naturally, both
training and validation set contain different portfolios. Only
the results on the validation set are reported as it is done
in classical machine learning scheme to show generalization
capabilities of the resulting strategy.

Algorithm 1 Genetic programming hyper-heuristic
1: hall of fame ← create empty HOF(size=1)
2: population ← gen ramped half and half(NPOP,min,max)
3: for strategy in population do
4: strategy.fitness ← simulate(strategy,training instances)
5: end for
6: hall of fame ←update HOF(hall of fame)
7: while gen ≤ NGEN do
8: parents← selection(population)
9: offsprings ← ∅

10: for candidate strategy in parents do
11: if random() ≤ CXPB then
12: mate ← sample(parents,1)
13: offspring1,offspring2 ← crossover(candidate strategy,mate)
14: offsprings ← offsprings ∪ {offspring1,offspring2}
15: else if random() ≤ CXPB+MUTPB then
16: mutant ← mutation(candidate strategy)
17: offsprings ← offsprings ∪ {mutant}
18: else
19: repro strategy ← copy(candidate strategy)
20: offsprings ← offsprings ∪ {repro strategy}
21: end if
22: end for
23: for new strategy in offsprings do
24: new strategy.fitness ← simulate(new strategy,training instances)
25: end for
26: hall of fame ←update HOF(hall of fame)
27: population ← offsprings
28: end while
29: return hall of fame

V. EXPERIMENTAL SETUP

The experiments presented in this paper were carried out
using the HPC facility of the University of Luxembourg [27].
The python library DEAP [12] has been considered for the
GP implementation. A distributed implementation relying on
a master-slave model has been put in place to evaluate each
strategy of the population in parallel. Table II describes the
GP hyperparameters while Table III described simulation
parameters for both training and validation.

TABLE II
GP PARAMETERS

Runs 30
Generations 50
Population size 500
Crossover Probability (CXPB) 0.85
Mutation Probability (MUTPB) 0.1
Reproduction Probability 0.05
Tree initialization method Ramped half-and-half
Selection Method Tournament selection with size=7
Depth limitation 17
Crossover Operator One crossover point
Mutation Operator Grow

Note that simulation parameters are aligned with the one
exposed in [8]. We consider quarterly recommitments and
recommit every time to 4 funds selected proportionally to a
fictive ESG (Environmental, Social Governance) score going
beyond the scope of this paper and part of a wider study. This
score has been computed with a specific correlation to the



Total Value Paid In (TVPI) which is an performance indicator
for PE funds. Finally, we consider two different sets of initial
portfolios. The first one consists of 250 portfolios for strategy
evaluation during training and the second one is made up of
1000 portfolios for validating results and strategy performance.

TABLE III
SIMULATION PARAMETERS

Parameters Training Validation
Cashflows frequency quarterly quarterly
Investment period 26 years 26 years
Funds per recommitment 4 4
Fund selection ESG score ESG score
Number of simulated portfolios
(per evaluation) 250 1000

Distributed simulation True False

VI. EXPERIMENTAL RESULTS

With respect to the parameters described in the previous
section, 30 runs have been performed. Fig. 5 displays the
average convergence curve obtained during the 50 generations.
Convergence is very fast as it is generally observed in GP
studies. The average function size, i.e., size of the strategy, first
decreases rapidly too but steadily increase afterwards while the
objective value reaches a plateau. We can clearly see that 15
generations would be enough and “bloating”, i.e., phenomenon
characterized by variable-length genomes gradually increasing
in size during evolution impacts the scoring function training
after this threshold. In fact, this bloating phenomenon is con-
nected to the “overfitting” phenomenom in machine learning.
It is good manner to stop the evolution to avoid the production
of functions with no generalization capabilities. In the end,
we aim at obtaining strategies which could be applied to any
portfolios and cashflows.
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For this reason, the best strategy obtained is tested on a
validation set of 1000 different portfolios. Fig. 4 depicts the
resulting investment degrees for this validation. The strategy
Sbest(t) provided the best results during training. One can
notice that this strategy is able to keep a high allocation during
all the active investment period adjusting constantly recom-
mitments. Some portfolios (≈ 3.7%) became invalid during

the simulations. These number would have been much larger
if only the average investment degree had been taken into
account. The Upper Confidence Bound relies on both average
investment degree and standard deviation which permits to
statistically bound the number of invalid portfolios to be at
most 5%.
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(
−Casht ×Dt +DZ3(t),min (Casht, Dt + 2UCt−24)

)
+

min
(
Casht,max

(
D2

t , Dt + 2UCt24
))

One can also observe that the terminal/token DZ3(t) rep-
resenting de Zwart’s last strategy is part of Sbest(t). This
empirically confirms the good results reported in [8] on a new
dataset. Yet we can compare our results with the 3 strategies
proposed by de Zwart et al. defined as follows:
• DZ1(t) = Dt: recommit current distribution at t;
• DZ2(t) = Dt + UCt24: recommit distributions plus the

uncalled capital made 24 quarters ago at t;
• DZ3(t) = 1

IDt
× (Dt + UCt24): Scale recommitment

value obtained from DZ2(t) with the inverse of the
investment degree.

As done for Sbest(t), the 3 strategies have been applied on
the validation set made up of 1000 portfolios. Table VI reports
the average investment degree, the standard deviation of the
investment degree and the fraction of overinvested portfolios
obtained for each strategy including Sbest. With regards to the
data used in this study, the 3 strategies DZi(t) for t ∈ {1, 2, 3}
do not face any problem in terms of cash shortage. However,
the highest investment degree reached by each of them is far
from the ideal one leading to some “opportunity cost”. Indeed
DZ1(t) and DZ2(t) does not exceed 0.75 while DZ3(t)
reached 0.8 with overcommitment. Besides, these values occur
at the very beginning of the investment period and let us
think that the initial overcommitment (30%) is the reason
of these peaks. Fig. 5 represents graphically all 3 strategies
including Sbest(t) confirms our first belief. We can clearly
observe that the investment degree for DZ1(t) and DZ2(t)
strongly decrease afterwards and stabilize later at nearly 0.6
while DZ3(t) gets stabilised at roughly 0.7.

On the contrary, Sbest(t) realizes 92% of the ideal invest-
ment degree. This value is reached after 15 years and is clearly
not impacted by the initial overcommitment. Furthermore,



the investment degree stabilises very well around 0.9 and
only starts decreasing when reaching the end of the active
recommitment period. Fig. 5 illustrates perfectly the differ-
ence between these 4 strategies in terms of dynamics. Last
but not least, the fraction of overinvested portfolios remains
extremely low with Sbest(t). Due to the proximity with the
ideal investment degree (ID=1) and cashflow’s variability,
it comes as no surprise that some portfolios get slightly
overinvested. In this work, we notice that Sbest(t) only have
3.7% (< 5% threshold) of invalid portfolios at the end of the
validation. Only LP investors can decide how to balance and
evaluate their risk. Both opportunity cost and cash shortage
are two conflicting objectives. Nonetheless, most investors
diversify the investments and generally possess multi-class
asset portfolios. If cash is missing, some liquid assets such as
stocks and bonds could be sold to cope with such a situation.
Of course, this solution should be tempered and only arise
when no alternatives can be found. Please note that selling
stocks and bonds still remain less critical than becoming a
defaulting LP investor.

DZ1(t) DZ2(t) DZ3(t) Sbest(t)
years mean std proba mean std proba mean std proba mean std proba

0 0.07 0.02 0.0 0.07 0.02 0.0 0.07 0.02 0.0 0.07 0.02 0.00
1 0.29 0.03 0.0 0.29 0.03 0.0 0.29 0.03 0.0 0.30 0.03 0.00
2 0.51 0.04 0.0 0.51 0.04 0.0 0.55 0.03 0.0 0.55 0.03 0.00
3 0.68 0.04 0.0 0.68 0.04 0.0 0.74 0.03 0.0 0.76 0.03 0.00
4 0.75 0.04 0.0 0.75 0.04 0.0 0.82 0.03 0.0 0.85 0.03 0.00
5 0.75 0.04 0.0 0.75 0.04 0.0 0.84 0.04 0.0 0.89 0.04 0.20
6 0.71 0.05 0.0 0.71 0.05 0.0 0.80 0.04 0.0 0.89 0.04 0.67
7 0.63 0.05 0.0 0.64 0.05 0.0 0.74 0.04 0.0 0.87 0.04 0.03
8 0.57 0.04 0.0 0.58 0.04 0.0 0.69 0.04 0.0 0.87 0.05 0.00
9 0.56 0.03 0.0 0.58 0.03 0.0 0.70 0.03 0.0 0.89 0.05 0.02

10 0.58 0.03 0.0 0.60 0.03 0.0 0.72 0.03 0.0 0.91 0.06 0.08
11 0.60 0.02 0.0 0.61 0.02 0.0 0.75 0.03 0.0 0.92 0.07 0.20
12 0.60 0.02 0.0 0.61 0.02 0.0 0.75 0.03 0.0 0.91 0.08 0.00
13 0.59 0.02 0.0 0.60 0.02 0.0 0.74 0.03 0.0 0.90 0.08 0.00
14 0.57 0.02 0.0 0.58 0.02 0.0 0.73 0.03 0.0 0.89 0.09 0.00
15 0.56 0.02 0.0 0.57 0.02 0.0 0.71 0.03 0.0 0.90 0.09 0.12
16 0.55 0.02 0.0 0.57 0.02 0.0 0.71 0.02 0.0 0.92 0.10 0.26
17 0.56 0.02 0.0 0.57 0.02 0.0 0.71 0.02 0.0 0.92 0.10 0.50
18 0.56 0.02 0.0 0.57 0.02 0.0 0.72 0.02 0.0 0.91 0.10 0.32
19 0.56 0.02 0.0 0.58 0.02 0.0 0.73 0.02 0.0 0.91 0.11 0.10
20 0.56 0.02 0.0 0.58 0.02 0.0 0.73 0.02 0.0 0.90 0.11 0.00
21 0.56 0.02 0.0 0.57 0.02 0.0 0.73 0.02 0.0 0.90 0.11 0.18
22 0.56 0.02 0.0 0.57 0.02 0.0 0.72 0.02 0.0 0.90 0.12 0.22
23 0.55 0.02 0.0 0.57 0.02 0.0 0.72 0.02 0.0 0.90 0.13 0.18
24 0.55 0.02 0.0 0.57 0.02 0.0 0.72 0.02 0.0 0.90 0.14 0.27
25 0.55 0.02 0.0 0.57 0.02 0.0 0.72 0.02 0.0 0.90 0.14 0.10
26 0.56 0.02 0.0 0.57 0.02 0.0 0.72 0.02 0.0 0.89 0.15 0.05
27 0.55 0.02 0.0 0.56 0.02 0.0 0.71 0.02 0.0 0.87 0.15 0.17
28 0.52 0.02 0.0 0.53 0.02 0.0 0.66 0.03 0.0 0.79 0.14 0.03
29 0.46 0.02 0.0 0.47 0.02 0.0 0.59 0.03 0.0 0.69 0.13 0.00
30 0.40 0.02 0.0 0.40 0.02 0.0 0.50 0.03 0.0 0.58 0.11 0.00
31 0.32 0.02 0.0 0.33 0.02 0.0 0.40 0.03 0.0 0.46 0.10 0.00
32 0.24 0.02 0.0 0.25 0.02 0.0 0.30 0.03 0.0 0.35 0.08 0.00
33 0.16 0.02 0.0 0.16 0.02 0.0 0.19 0.03 0.0 0.22 0.06 0.00
34 0.08 0.02 0.0 0.09 0.02 0.0 0.10 0.02 0.0 0.12 0.04 0.00
35 0.04 0.01 0.0 0.04 0.01 0.0 0.05 0.01 0.0 0.06 0.02 0.00
36 0.01 0.01 0.0 0.01 0.01 0.0 0.02 0.01 0.0 0.02 0.01 0.00
37 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0 0.01 0.01 0.00
38 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.00

TABLE IV
SUMMARY STATISTICS OF THE INVESTMENT DEGREE IN RECOMMITMENT

STRATEGIES

VII. CONCLUSION AND PERSPECTIVES

To maintain a high allocation to PE, LP investors have to
carefully recommit to new funds. As of yet, arbitrary rules
lacking robustness and flexibility are generally proposed as
a current way out. Recently, some works have attempted
to model and solve the PERP by proposing two main al-
ternatives. The first one relies on cashflow predictions, i.e.,
statistically predicting future contributions and distributions
while the second takes a more pragmatic approach building
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Fig. 5. Average investment degree for all 4 strategies

approximation strategies only from past and current known
features. In this work, we argue that these approximation
strategies can be discovered using Evolutionary Learning,
i.e., generating recommitment strategies with a GP algorithm.
For this purpose, a simulation-based approach has been put
in place to evaluate strategies over some investment period.
Strategies are ranked according to the Upper Bound Confi-
dence (UCB) to keep control on the fraction of portfolios with
an investment degree higher than 1, i.e., invalid portfolios due
to cash shortage. Results obtained after experiments show that
the proposed approach leverages the generation of efficient
recommitment strategies with higher investment degree while
keeping within boundaries the number of invalid portfolios.
Indeed, when getting closer to the ideal investment degree,
the risk of defaulting slightly increases but remains below
5%. UCB allows LP investors to adjust the risk to be over-
invested. Although the previous results confirm the suitability
of automatising the generation of recommitment approaches, it
could be more profitable to combine multiple strategies within
a single simulation. This could take into account changes in
market condition during portfolio’s lifetime. This last remarks
will be subject of next investigations. Finally, this work is
a part of a larger project to develop an decision-aid tool for
PE decision makers including ESG considerations. Indeed, the
rise of Environmental, Social, and Governance (ESG) factors
has been one of the major changes for PE partners over the
last decade. It is therefore not trivial to evaluate them with a
single criterion adding another level of difficulties for investors
who needs to deal with fuzziness and conflicting objectives.
Currently, there is no automatic and optimised solutions to
help investors to maximise their allocation to ESG.
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